Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
<td>Authors</td>
</tr>
<tr>
<td>xvii</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>xxi</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

Part One

FACILITIES I

<table>
<thead>
<tr>
<th>9907 02</th>
<th>The Navy Precision Optical Interferometer: an update (Invited Paper) [9907-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9907 03</td>
<td>An update on the CHARA array (Invited Paper) [9907-2]</td>
</tr>
<tr>
<td>9907 04</td>
<td>Overview of LBTI: a multipurpose facility for high spatial resolution observations (Invited Paper) [9907-3]</td>
</tr>
</tbody>
</table>

FACILITIES II

<table>
<thead>
<tr>
<th>9907 05</th>
<th>A new path to first light for the Magdalena Ridge Observatory interferometer (Invited Paper) [9907-4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9907 06</td>
<td>The 2nd generation VLTI path to performance (Invited Paper) [9907-5]</td>
</tr>
</tbody>
</table>

INSTRUMENTS

<table>
<thead>
<tr>
<th>9907 0A</th>
<th>An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status (Invited Paper) [9907-9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9907 0B</td>
<td>Imaging capabilities of the VLTI/MATISSE spectro-interferometric instrument (Invited Paper) [9907-10]</td>
</tr>
<tr>
<td>9907 0C</td>
<td>MATISSE: alignment, integration, and test phase first results [9907-11]</td>
</tr>
</tbody>
</table>

SCIENCE I

<p>| 9907 0D | Imaging protoplanets: observing transition disks with non-redundant masking (Invited Paper) [9907-12] |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>9907E</td>
<td>A conceptual scheme for cophasing across gaps in segmented pupils with a laser guide star Fizeau interferometer (Invited Paper)</td>
<td>[9907-13]</td>
<td></td>
</tr>
<tr>
<td>9907J</td>
<td>Speckle imaging at large telescopes: current results and future prospects (Invited Paper)</td>
<td>[9907-18]</td>
<td></td>
</tr>
<tr>
<td>9907K</td>
<td>SRAO: the first southern robotic AO system</td>
<td>[9907-19]</td>
<td></td>
</tr>
<tr>
<td>9907L</td>
<td>The role of Fizeau interferometry in planetary science</td>
<td>[9907-20]</td>
<td></td>
</tr>
<tr>
<td>9907M</td>
<td>Intensity interferometry: optical imaging with kilometer baselines (Invited Paper)</td>
<td>[9907-21]</td>
<td></td>
</tr>
<tr>
<td>9907N</td>
<td>Intensity interferometry with Aqueye+ and Iqueye in Asiago</td>
<td>[9907-22]</td>
<td></td>
</tr>
<tr>
<td>9907O</td>
<td>On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs</td>
<td>[9907-24]</td>
<td></td>
</tr>
<tr>
<td>9907Q</td>
<td>The orbit of the mercury-manganese binary 41 Eridani</td>
<td>[9907-25]</td>
<td></td>
</tr>
<tr>
<td>9907R</td>
<td>Infrared interferometry and AGNs: Parsec-scale disks and dusty outflows (Invited Paper)</td>
<td>[9907-26]</td>
<td></td>
</tr>
<tr>
<td>9907S</td>
<td>The path to interferometry in space (Invited Paper)</td>
<td>[9907-27]</td>
<td></td>
</tr>
<tr>
<td>9907T</td>
<td>Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTI): delay lines and alignment</td>
<td>[9907-28]</td>
<td></td>
</tr>
<tr>
<td>9907U</td>
<td>Recent experiments conducted with the Wide-field imaging interferometry testbed (WIIT)</td>
<td>[9907-29]</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>0V</td>
<td>The innermost astronomical units of protoplanetary disks (Invited Paper)</td>
<td>9907-30</td>
<td></td>
</tr>
<tr>
<td>0X</td>
<td>Making high-accuracy null depth measurements for the LBTI exozodi survey</td>
<td>9907-32</td>
<td></td>
</tr>
<tr>
<td>0Z</td>
<td>Direct temperature map estimation in optical long baseline interferometry</td>
<td>9907-138</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>OIFITS version 2: the new standard for optical/IR interferometry data exchange (Invited Paper)</td>
<td>9907-34</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ASPRO2: get ready for VLTI's instruments GRAVITY and MATISSE</td>
<td>9907-35</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Spectrally dispersed Fourier-phase analysis for redundant apertures</td>
<td>9907-36</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Enabling the direct detection of earth-sized exoplanets with the LBTI HOSTS project: a progress report</td>
<td>9907-37</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Imaging transient events at high angular resolution (Invited Paper)</td>
<td>9907-38</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fast sub-electron detectors review for interferometry (Invited Paper)</td>
<td>9907-39</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Progress towards photon-counting infrared arrays for interferometry</td>
<td>9907-40</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Interferometric studies of disk-eclipsed binary star systems (Invited Paper)</td>
<td>9907-41</td>
<td></td>
</tr>
</tbody>
</table>
Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy (Invited Paper) [9907-42]

Increasing the spectral coverage of interferometric integrated optics: K/L and N-laser-written beam combiners [9907-43]

ALOHA project: how nonlinear optics can boost interferometry to propose a new generation of instrument for high-resolution imaging [9907-44]

Evolved stars at high angular resolution: present and future (Invited Paper) [9907-45]

Interferometric image reconstruction: techniques, results, and future direction (Invited Paper) [9907-46]

The 2016 interferometric imaging beauty contest (Invited Paper) [9907-47]

Global optimization for image restoration in optical/IR interferometry [9907-48]

Hierarchical fringe tracker to co-phase and coherence very large optical interferometers [9907-49]

Simultaneous water vapor and dry air optical path length measurements and compensation with the large binocular telescope interferometer [9907-50]

Long baseline interferometry in the visible: first results of the FRIEND project [9907-51]

Planet Formation Imager (PFI): science vision and key requirements [9907-54]

Status of the Planet Formation Imager (PFI) concept (Invited Paper) [9907-55]
Part Two

PLANET FORMATION IMAGER II

| 9907 1N | Beam combination schemes and technologies for the Planet Formation Imager [9907-57] |
| 9907 1O | Architecture design study and technology road map for the Planet Formation Imager (PFI) [9907-58] |

WEDNESDAY POSTER SESSION

9907 1Q	How to create space inside the VLTI: PIONIER 3D project [9907-60]
9907 1S	Fundamental gain in high-contrast imaging with the large binocular telescope interferometer [9907-62]
9907 1T	Sensitivity to differential piston and to adaptive optics errors with the Large Binocular Telescope Interferometer [9907-63]
9907 1W	SCSI: the Southern Connecticut Stellar Interferometer [9907-66]
9907 1X	Monitoring a decade of seeing at the NPOI with quad cell measurements [9907-67]
9907 1Z	VLT Interferometer upgrade for the 2nd generation of interferometric instruments [9907-69]
9907 20	NAOMI: a low-order adaptive optics system for the VLT interferometer [9907-70]
9907 21	Control bandwidth improvements in GRAVITY fringe tracker by switching to a synchronous real time computer architecture [9907-71]
9907 22	The metrology system of the VLTI instrument GRAVITY [9907-73]
9907 23	Data reduction for the MATISSE instrument [9907-74]
9907 24	ALOHA/CHARA at 1.55 μm: sensitivity improvement and on-sky ability to detect astronomical sources in H band [9907-75]
9907 25	The new classic instrument for the navy precision optical interferometer [9907-76]
9907 27	GRAVITY acquisition camera: characterization results [9907-78]
9907 28	MATISSE: specifications and expected performances [9907-79]
9907 2B	H- controller design for high sensitivity fringe tracking [9907-82]
9907 2C	Multi-baseline chain bootstrapping with new classic at the NPOI [9907-83]
9907 2E	C-RED One: the infrared camera using the Saphira e-APD detector [9907-86]
9907 2F	GRAVITY detector systems [9907-87]
9907 2G	Measuring the thermal sensitivity of a fiber Fabry-Pérot interferometer [9907-88]
9907 2H	Experimental demonstration of a crossed cubes nuller for coronagraphy and interferometry [9907-89]
9907 2I	Khayyam: progress and prospects of coupling a spatial heterodyne spectrometer (SHS) to a Cassegrain telescope for optical interferometry [9907-90]
9907 2K	Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer [9907-93]
9907 2L	Fiber-based heterodyne infrared interferometry: an instrumentation study platform on the way to the proposed Infrared Planet Formation Imager [9907-94]
9907 2O	Recent developments with the visible nulling coronagraph [9907-98]

THURSDAY POSTER SESSION

9907 2R	Differential speckle and wide-field imaging for the Gemini-North and WIYN telescopes [9907-100]
9907 2T	Sparse aperture masking with SPHERE [9907-102]
9907 2U	Interferometric direct imaging properties of a BIGRE-DAM device in laboratory [9907-103]
9907 30	Chalcogenide glass planar MIR couplers for future chip based Bracewell interferometers [9907-109]
9907 31	All-in-one 4-telescope beam combination with a zig-zag array of waveguides [9907-110]
9907 32	ALOHA @3.39 μm: implementation of the up-conversion interferometer in the L band [9907-111]
9907 33	6- and 8-telescope discrete beam combiners [9907-112]
9907 34	Model-based calculations of fiber output fields for fiber-based spectroscopy [9907-113]
9907 35	Use of a photonic lantern into an image plane fiber beam combiner [9907-114]
9907 36	Fringe tracking at longer wavelengths using near- and mid-IR integrated optics devices [9907-115]
9907 38	Novel multi-telescopes beam combiners for next generation instruments (FIRST/SUBARU) [9907-117]
9907 39	Recent results on photonic devices made by laser writing: 3D 3T near IR waveguides, mid-IR spectrometers and electro-optic beam combiners [9907-118]
9907 3B	Interferometric field of view measurements at the VLTI [9907-120]
9907 3D	Effective a posteriori co-phasing of interferometric fringe data [9907-122]
9907 3E P-REx: the piston drift reconstruction experiment [9907-123]
9907 3F Image restoration for a hypertelescope [9907-124]
9907 3G Rotation and translation registration of bandlimited interferometric images using a chirp z-transform [9907-125]
9907 3H Image reconstruction method IRBis for optical/infrared long-baseline interferometry [9907-126]
9907 3I High fidelity imaging of geosynchronous satellites with the MROI [9907-127]
9907 3K Interbands phase models for polychromatic image reconstruction in optical interferometry [9907-129]
9907 3N User-friendly imaging algorithms for interferometry [9907-132]
9907 3P An interferometric view of binary stars [9907-135]
9907 3Q Grown-up stars physics with MATISSE [9907-136]
9907 3R Sharp images of WR104 [9907-137]
9907 3S Science with MATISSE [9907-139]
9907 3T Observing the PTPS sample of evolved exoplanet host candidates using the NPOI [9907-140]
9907 3V First year report of the Optical Interferometry DataBase [9907-142]
9907 3W Co-phasing the planet formation imager [9907-144]
9907 3X Practical beam transport for PFI [9907-145]
9907 40 The Wide-field Imaging Interferometry Testbed (WIIT): recent progress in the simulation and synthesis of WIIT data [9907-148]
9907 41 Stray light evaluation for the astrometric gravitation probe mission [9907-149]
9907 42 AGP (Astrometric Gravitation Probe) optical design report [9907-150]
<table>
<thead>
<tr>
<th>Authors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abad, José Antonio, 1Z</td>
<td>Berger, Jean-Philippe, 06, 0A, 18, 1K, 1N, 1Q, 1Z, 20</td>
</tr>
<tr>
<td>Abadie, Sergio, 1Z</td>
<td>Berggren, Karl, 0P</td>
</tr>
<tr>
<td>Abis, Olivier, 05, 0X</td>
<td>Bério, Philippe, 0A, 0C, 15, 1H, 23, 28, 3H, 3Q</td>
</tr>
<tr>
<td>Abuter, Roberto, 1Z, 21</td>
<td>Bessis, Felipe E., 2L</td>
</tr>
<tr>
<td>Accardo, M., 0C</td>
<td>Bettonvil, F., 0A, 0C</td>
</tr>
<tr>
<td>Acuña, Margarita, 1Z</td>
<td>Beuzit, Jean-Luc, 20, 2T</td>
</tr>
<tr>
<td>Ade, Peter, 0T</td>
<td>Belsch, Bertram, 1K</td>
</tr>
<tr>
<td>Agabi, Karim, 1F</td>
<td>Blind, Nicolas, 22</td>
</tr>
<tr>
<td>Agocs, T., 0A, 0C</td>
<td>Bodenmüller, Daniel, 34</td>
</tr>
<tr>
<td>Aller-Carpentier, Emmanuel, 20</td>
<td>Boffin, Henri M. J., 3P</td>
</tr>
<tr>
<td>Allouche, Fatmé, 0A, 0C, 1Z, 23, 28</td>
<td>Böhm, M., 1G</td>
</tr>
<tr>
<td>Alonso Herrero, Almudena, 1K</td>
<td>Bolados, Carlos, 1Z</td>
</tr>
<tr>
<td>Alonso, Jaime, 06, 12, 20</td>
<td>Bolcar, Matthew R., 0U, 2O, 40</td>
</tr>
<tr>
<td>Amorim, Antonio, 22, 27</td>
<td>Bonnet, Henri, 06, 1Z</td>
</tr>
<tr>
<td>Andolfalto, Luigi, 1Z, 20</td>
<td>Borsor, Arny, 1K</td>
</tr>
<tr>
<td>Anselmi, Alberto, 42</td>
<td>Boskri, Abdelkarim, 1F, 2B, 3W</td>
</tr>
<tr>
<td>Antichi, Jacopo, 2U</td>
<td>Bourdarot, Guillaume, 2H</td>
</tr>
<tr>
<td>Antonelli, Pierre, 0A, 0C, 1Z, 28</td>
<td>Bourgès, Laurent, 11, 28, 3V</td>
</tr>
<tr>
<td>Anugu, Narsireddy, 27</td>
<td>Bourget, Pierre, 0A, 1Q, 1Z</td>
</tr>
<tr>
<td>Arcidiacono, Carmelo, 1S, 1T</td>
<td>Boutolleau, David, 2E</td>
</tr>
<tr>
<td>Arezki, Brahim, 2H</td>
<td>Boyajian, Tabetba, 1K</td>
</tr>
<tr>
<td>Armitage, Phil, 1K</td>
<td>Brandner, Wolfgang, 22, 27</td>
</tr>
<tr>
<td>Armstrong, J. Thomas, 02, 1X, 25, 2C, 3T</td>
<td>Brast, Roland, 0A, 0C, 1Z</td>
</tr>
<tr>
<td>Arriola, Alexander, 19</td>
<td>Bresson, Yves, 0A, 0C, 1F, 1H</td>
</tr>
<tr>
<td>Augereau, Jean-Charles, 0A, 3S</td>
<td>Briguglio, Runa, 0D</td>
</tr>
<tr>
<td>Avila, Gerardo, 0A, 1Z</td>
<td>Bristow, Paul, 0A, 0C, 1Z</td>
</tr>
<tr>
<td>Baba, Naoshi, 3F</td>
<td>Bryan, Sean, 0P</td>
</tr>
<tr>
<td>Baccani, Cristian, 41</td>
<td>Bryden, Geoffrey, 0X, 13</td>
</tr>
<tr>
<td>Baccichet, Nicola, 2K</td>
<td>Burtscher, Leonard, 0R</td>
</tr>
<tr>
<td>Bailey, C., 0A, 0C, 1H</td>
<td>Buscher, David F., 0S, 16, 1K, 3I</td>
</tr>
<tr>
<td>Bailey, Vanessa P., 04, 0D, 0X, 13</td>
<td>Busonero, Deborah, 42</td>
</tr>
<tr>
<td>Baines, Ellyn K., 02, 25, 2C, 3T</td>
<td>Calliat, Amandine, 2K</td>
</tr>
<tr>
<td>Baker, Ian, 2E</td>
<td>Caniguante, Luis, 1Z</td>
</tr>
<tr>
<td>Barbier, D., 38</td>
<td>Cassagnettes, C., 38</td>
</tr>
<tr>
<td>Barbieri, Cesare, 0N</td>
<td>Castillo, Roberto, 1Z</td>
</tr>
<tr>
<td>Barbieri, Mauro, 0N</td>
<td>Cervantes, R., 0S</td>
</tr>
<tr>
<td>Baron, Fabien, 0B, 1C, 1O</td>
<td>Cesare, Stefano, 42</td>
</tr>
<tr>
<td>Barriga, Pablo José, 1Z</td>
<td>Cheetham, Anthony C., 2T</td>
</tr>
<tr>
<td>Baruteau, Clement, 1K</td>
<td>Chiavassa, Andrea, 1K, 3Q, 3S</td>
</tr>
<tr>
<td>Bate, Matthew R., 1K</td>
<td>Choudhury, Debaditya, 19</td>
</tr>
<tr>
<td>Bayo, Amelia, 1K</td>
<td>Ciardi, David, 1K</td>
</tr>
<tr>
<td>Bazin, G., 28</td>
<td>Clampin, Mark, 2O</td>
</tr>
<tr>
<td>Beckmann, U., 0A, 0C, 23</td>
<td>Clark, James H., 02</td>
</tr>
<tr>
<td>Behrend, J., 0A</td>
<td>Clause, J.-M., 0A, 0C, 1H</td>
</tr>
<tr>
<td>Beltran, Juan, 1Z</td>
<td>Clop, Fabien, 2E</td>
</tr>
<tr>
<td>Bendjoua, P., 3Q</td>
<td>Close, Laird M., 0D</td>
</tr>
<tr>
<td>Benisty, Myriam, 0V, 1K, 3V</td>
<td>Connot, C., 0A</td>
</tr>
<tr>
<td>Benkhaldoun, Zouhair, 1F</td>
<td>Conrad, Albert R., 0L</td>
</tr>
</tbody>
</table>
Conzelmann, Ralf, 0A, 1Z
Correia, Jean-Jacques, 20
Cortes, Angela, 12, 20
Creech-Eakman, Michelle J., 05, 1O, 3I
Cruzalèbes, P., 0A, 0C, 23, 2B, 3Q
Csépany, G., 0A
Cvetkojevic, Nick, 18, 30
Dahl, C., 05
Dolgarno, Paul A., 35
Dolz, G., 0A
Dong, Ruobing, 1O
Dorn, Reinhold J., 1Z, 20
Dow, Thomas, 0T
Dowey, O., 04, 1G
Dravins, Dainis, 0M
Duval, Marie, 1K
Duval, Marthe, 12
Duffy, Christophe, 1Z, 20
Duney, O., 04, 1G
Duvert, Gilles, OQ, 10, 11, 3D, 3N, 3V
Eggleton, B., 30
Egner, Sebastian E., 06, 1Z, 20
Eisenhauer, Frank, 06, 1Z, 21, 22, 27, 2F
Eisner, Josh, 0D
El Hakouj, Thami, 1F, 2B, 3W
Eiio, Christian, 1Z
Elswijk, E., 0A, 0C
Ermann, Ronny, 33
Ertel, S., 04, 13, 1G
Espaillat, Catherine, 1K
Esposito, Simone, 04, 1S, 1T
Fantei, Y., 0A
Fantei-Caujolle, Y., 0C
Farinato, Jacopo, 2U
Farsato, Giancarlo, 0N
Farrington, Chris D., 03, 3V
Farris, A., 05
Favazza, Paolo, 0N
Feautrier, Philippe, 15, 2E
Fedou, Pierre, 21
Fernandez, Ruben, 1Z
Ferrari, André, 0Z, 1D, 3K
Fienu, James R., 0U, 3G
Finger, Gert, 0A, 16, 2F
Fisher, M., 05
Fixsen, Dale, 0T
Focardi, Mauro, 41
Folcher, Jean-Pierre, 1F, 2B
Follette, Katherine B., 0D
Frahm, R., 0C
Fu, Qiang, 3E
Fuenteseca, Eloy, 1Z
Furst, Stephen, 0T
Gabsch, A., 0A
Gach, Jean-Luc, 15, 2E
Gal, Mario, 41, 42
Gallenne, Alexandre, 1K
Gallieni, Danièle, 42
Gandhi, Poshak, 1K
Garcia López, Rebeca, 0V
Garcia, Paulo, 27, 3N
Gardillou, F., 38
Gaytan, Daniel, 1Z
Genzel, Reinhard, 22
Gies, D. G., 03
Gillesen, Stefan, 22
Girard, Julien, 2T, 2U
Giro, Enrico, 2U
Giudice, Andrea, 1W
Glindemann, Andreas, 0A, 0C, 1Z
Gomes, Jean-Thomas, 1A
Gonté, Frédéric Yves J., 06, 0A, 1Q, 1Z, 20
González Herrera, J.-C., 0C
Gonzalez, Jaime, 1Z
Gonzalez, Jean-François, 1K
Gordo, Paolo, 27
Graser, U., 0A, 0C
Graff, Raffaele, 2U
Greenaway, Alan H., 35
Greffe, Timothée, 2E
Grenz, P., 04
Grossard, Ludovic, 1A, 24, 32
Guiu, Sylvain, 06, 1Q, 1Z
Guibard, Stéphane, 1Z
Guillin, F., 0A, 23
Gulinatti, Angel, 1W
Guniat, S., 0A
Guyot, C., 38
Haguenauser, Pierre, 06, 0A, 1Q, 1Z
Haimerl, Andreas, 1Z
Halmerl, Andreas, 1Z
Halverson, Samuel, 2G
Hansen, H., 0A
Haniff, Christopher A., 05, 13, 1K, 1N, 3I
Hans, Oliver, 22
Harries, Tim J., 1K
Harris, Robert, 18
Harris, Walter, 2I
Haubois, Xavier, 2T, 3V
Hauden, J., 38
Haug, Marcus, 22
Haußmann, Frank, 22
Haynes, Roger, 18
Heininger, Matthias, 0A, 0C, 1D, 23, 3H
Heinz, Volker, 1Z
Helmbrecht, Michael A., 2O
Héraut, François, 2H
Henning, Thomas, 0A, 0B, 3S
Henriquez, Juan Pablo, 12
Hernandez, Eloy, 34
Henn, Harald, 1K
Hicks, Brian A., 2O
Hill, John M., 04, 1G, 1S, 1T
Hindsley, R., 25
Hinz, Philip M., 04, 0D, 0X, 13, 1G, 1S, 1T
Hofferbert, R., 0A
Hoffmann, W., 04, 1G
Hofmann, Karl-Heinz, 0A, 0B, 1D, 23, 3H, 3Q, 3R, 3S
Hogerheijde, Michiel, 0A, 0S
Holland, W., 05
Hönig, Sebastian, 0R, 1K
Horch, Elliott P., 0J, 1W, 2R
Hosseini, Sona, 2I
Howard, Joseph M., 2O
Howell, Steve B., 2R
Huber, David, 22
Huber, Stefan, 20
Hubin, Norbert, 12, 20
Hubrig, Swetlana, 0Q
Hübner, Christian A., 0Q, 1Q, 20, 3B, 3V
Iacchetta, Alexander S., 0U, 3G, 40
Ice, John, 1K
Ireland, Michael J., 03, 1K, 1L, 1N, 1Q, 3Q, 3R, 3X
Isard, D., 0A
Isella, Andrea, 1L, 1O
Ives, D., 0A, 0C
Jaffe, Walter, 0A, 0C, 0R, 23, 3S
Jakob, G., 0A
Jasko, A., 0A
Jau, L., 0S
Jennings, Jeff, 2G
Jensen, Eric L., 1K
Jochum, Lieselotte, 1Z
Jocou, L., 1Q
Johnson, Mauricio, 2L
Johnston, P., 0S
Jolley, Paul, 0A, 20
Jorgensen, A. M., 25, 2C
Jovanovic, Nemanja, 18
Juanola-Parramon, Roser, 0S, 0U, 40
Juhász, Attila, 1K, 3S
Kane, Stephen R., 1K
Kellner, Stefan, 22
Kelly, R., 05
Kelz, Andreas, 34
Kenchington Goldsmith, H.-D., 30
Kennedy, Grant M., 0X, 13
Khorrami, Z., 0A
Kiraly, S., 0A
Kirchbauer, Jean-Paul, 20
Kishimoto, Makoto, 0R, 1K
Kley, Wilhelm, 1K
Klinglesmith, D., 05
Kluska, Jacques, 0V, 0Z
Kok, Yitping, 22
Kragt, J., 0A
Krai, Quentin, 1K
Kratschmann, Tobias, 22
Kratter, Kaitlin, OD, 1K
Kraus, Stefan, 1K, 1L, 1O, 3W
Kroener, T., 0A
Kroes, G., 0A
Kuindersma, S., 0A
Labadie, Lucas, 0A, 18, 19, 1K, 1N, 31, 36
Lacour, Sylvestre, 18, 1K, 1N, 21, 2T, 38
Lagadec, E., 3R
Lagarde, Stephane, 0A, 0C, 1F, 23, 28
Landini, Federico, 41, 42
Lanz, Thierry, 0A, 3Q, 3S
Lassen, Mattas, 2L
Lattanzi, Mario Gilberto, 42
Laughlin, Greg, 1K
Laun, W., 0A, 0C
Law, Nicholas M., 0K
Lawrence, J. S., 30
Laizerini, Paolo, 42
Le Bouquin, Jean-Baptiste, 0Q, 1Q, 20, 3B, 3V
Le Louarn, Miska, 20
Le Réger, Jonathan, 1E
Lehmütz, M., 0A, 0C
Leinert, C., 0A
Leisawitz, David T., 0S, 0U, 3G, 40
Leisering, J., 04
Leiva, Alfredo, 1Z
Lenard, Stephane, 2E
Lessio, Luigi, ON
Lévéque, Samuel, 1Z
Lilley, Paul, 20
Lippa, Magdalena, 22
Lizon, Jean-Louis, 0A, 0C, 1Z
Lopez, Bruno, 0A, 0B, 0C, 23, 2B, 3V, 3Q, 3S
Lopez-Gonzaga, Noël, 0R
Love, H., 05
Luco, Fernando, 1Z
Lucin, C., 0A
Luther-Davies, B., 30
Lyon, Richard G., 2O
Ma, P., 30
Macintosh, Bruce A., 0D
MacPherson, William N., 19
Madden, Gillian, 19

Proc. of SPIE Vol. 9907 990701-13
Madden, S. J., 30
Magnard, Yves, 20
Mahadevan, Suvrath, 2G
Maher, Stephen F., 0U, 40
Males, Jared R., 0D
Mani, Hamdi, 0P
Marcos, Michel, 2K
Marcotto, A., 0A, 0C
Mardones, Pedro, 1Z
Martin, Guillermo, 18, 38, 39
Martinache, Frantz, 0A, 12
Martinod, M. A., 1H
Martinot-Lagarde, G., 0A
Martis, Alessandro, 20
Mary, David, 1D, 3K
Masset, Frederic, 1K
Mauclert, N., 0A
Maurel, Didier, 20
Mauskopf, Philip, 0P
McAlister, H. A., 03
Mehrgan, Leander H., 0A, 2F
Meilland, Anthony, 0A, 0C, 1H, 23, 3Q, 3S
Meisenheimer, Klaus, 0A, 0R, 3S
Meixner, K., 0C
Mella, Guillaume, 3N, 3V
Mellado, Angel, 1Z
Mellein, M., 0A, 0C
Menardi, S., 0A
Mennesson, Bertrand, 04, 0X, 13, 1G
Mentzell, Eric, 0T
Mérand, Antoine, 06, 0A, 1O, 1Q, 1Z, 3B
Meru, Farzana, 1K
Michaël, Ernest A., 1L, 1O, 2L
Michaud, Laurence, 20
Millan-Gabet, Rafael, 04, 0X, 13, 1G, 1K
Miller, Ian J., 2O
Millour, Florentin, 0A, 0B, 0C, 1D, 1H, 1K, 23, 28, 3H, 3Q, 3R, 3S
Minardi, Stefano, 18, 19, 1L, 1N, 1O, 31, 33, 36
Miura, Noriaki, 3F
Monnier, John D., 03, 1K, 1L, 1O, 3W
Montoya, M., 04, 1G
Morbidelli, Alessandro, 1K
Mordasini, Chris, 1K
Morel, S., 0A, 0C
Morlok, Andreas, 1K
Morozov, Dmitry, 0P
Mortozi, Katie M., 04, 0D
Moulin, Thiabult, 20
Mourard, Denis, 1H, 2U, 3V
Mouravev, David, 05, 1L, 1O, 25, 2C, 3X
Munday, Lee, 0T
Murakami, Naoshi, 3F
Mutthusubramanian, Balaji, 19, 36
Nakai, Yuto, 3F
Nalsetto, Giampiero, ON
Nardetto, Nicolas, 3Q, 3S
Nelson, Richard P., 1K
Neumann, U., 0A, 0C
Niccolini, G., 3Q
Niedzielski, Andrzej, 3T
Nolte, Stefan, 19, 31
Nowak, Matthias, 0X
Nusdeo, Daniel A., 1W
Nussbaum, E., 0A
Ochoa, D., 05
Olivares, A., 05
Olofsson, Johan, 1K
Ortega, Nicolas, 2L
Osorio, Juan, 1Z
Ott, Jürgen, 1Z
Ott, Thomas, 22, 27
Ottogalli, S., 0A
Oudmaijer, Rene, 1K
Ozon, Matthew, 1E
Paardekooper, Sijme-Jan, 1K
Packham, Chris, 1K
Paladini, Claudia, 1B, 1K, 3Q, 3S
Pallanca, Laurent, 1Z
Pals, R., 0A
Pancretz, Maurizio, 41
Panduro, Johana, 0A, 2F
Panic, Olja, 1K
Pantin, Eric, 0A, 3S
Pasquini, Luca, 1Z, 20
Patru, Fabien, 1S, 1T, 2U
Paulique, Jérôme, 20
Pavez, Marcus, 1Z
Payne, Ifan, 05, 3I
Pedretti, Ettore, 3S
Pepper, Joshua, 1K
Percheron, Isabelle, 0A, 1Z
Peron, Pietro, 1W
Perraut, Karine, 1H, 22, 27
Perrin, Guy, 18, 22, 27
Peter, Diethard, 3E
Pettrone, Peter, 2O
Petrov, Romain G., 0A, 0C, 1F, 1K, 1L, 1O, 23, 28, 2B, 3Q, 3S, 3W
Pettazzi, Lorenzo, 06
Phu, Olivier, 22, 27
Phan Duc, Thanh, 0A, 1Z, 20, 21
Pierens, Arnaud, 1K
Pijuan, Jordi, 1J
Pilyavsky, Genady, 0P
Pina, Miguel I., 2L
Pinna, Enrico, 04, 1S, 1T
Pino, Andres, 1Z
Pino, J., 05
Pinto, Christophe, 1K
Pirard, Jean-Francois, 1Z
Plett, Markus, 22
Pollard, Clemente, 2L
Pope, Benjamin, 1K
Pott, Jörg-Uwe, 0A, 0B, 19, 1G, 1K, 36, 3E
Poupar, Sébastien, 06, 1Q, 1Z
Pozna, E., 0A
Price, J., 05
Puglisi, Alfio T., 04, 0D, 1S, 1T
Pugnat, T., 38
Quentin, Jutta, 20
Quiroga-Nuñez, Luis Henry, 1K
Rabau, Patrick, 2U
Rakotonimbahy, Eddy, 2K
Ramírez, Andres, Cristina, 1K
Ramos, Nicolas, 2L
Rates, Alfredo, 2L
Rau, Christian, 22
Raymond, Sean, 1K
Rea, A., 05
Rech, Ivan, 1W
Regaly, Zsolt, 1K
Reinero, Claudio, 1Z
Restaino, Sergio R., 02, 1X
Rieke, G., 13
Riker, J., 05
Rinehart, Stephen A., 0S, 0T, 0U, 1L, 1O, 40
Riquelme, Miguel, 1Z
Rodenas, A., 39
Rodigas, Timothy J., 0D
Roelfsema, R., 0A
Roelofsma, R., 0A
Rojas, Chester, 1Z
Romero, Juan, 1Z
Romero, V., 05
Rosotti, Giovanni, 1K
Roth, Martin M., 18, 34
Rou, Alain, 20
Rozas, Felix, 1Z
Rupert, Justin D., 1W
Rupprecht, G., 0A
Salcido, C., 05
Salgado, Fernando, 1Z
Saltum, Steph, 0D
Sampier, Henry, 0T
Sanchez-Bermudez, J., 0B, 1D
Santora, F., 05
Savini, Giorgio, 0S, 2K, 40
Schaefer, Gail H., 03, 14
Scheithauer, Silvia, 1Z
Scherer, Dieter, 0A, 0B, 1D, 23, 3H, 3Q, 3S
Schmidt, Christian, 1Z
Schmidt, C., 0A
Schmidt, L., 05
Schmitt, Henrique R., 02, 1X, 25, 2C, 3T
Schoeiller, M., 0A
Schollier, Markus, 06, 0C, 0Q, 1Z
Schroeder, Edward, 0P
Schuhler, Nicolas, 06, 1Q, 1Z
Schur, M., 0A
Schutz, Antony, 0Z, 1D, 3D, 3K
Schworer, Guillaume, 2T
Scott, Nicholas J., 03, 24, 2R
Seneta, Eugene B., 0S, 16
Serabyn, Eugene, 0X, 13
Shchkaturov, Pavel, 20
Schiari, Waldo, 1Z
Silberhorn, Christine, 32
Silverberg, Robert F., 0T
Sinclair, Adrian, 0P
Skemer, Andrew J., 04, 0D, 0X, 13, 1G
Skrutskie, M., 04
Smirnov, Konstantin, 0P
Smith, Michael, 1K
Smith, Nathan, 0P
Soulain, A., 23, 3Q, 3R
Soulez, Frédéric, 02, 1E, 3D, 3K
Spalding, Eckhart, 04, 0D, 1G
Spang, Alain, 0A, 1H, 2H
Spencer, L., 0S
Stadler, Eric, 20, 2E
Stapelfeldt, Karl, 0X, 13
Stassun, Keivan, 1K
Stee, P., 3Q
Stegmeier, J., 0A
Stencel, Robert E., 17
Stephan, Christian, 1Z
Stoian, R., 39
Stone, J., 04, 1G
Straubmeier, Christian, 22, 27
Sturm, Eckhart, 22
Sturmann, J., 03, 24
Sturmann, L., 03
Suarez, Marcos, 20
Sun, Xiaowei, 0S, 0T
Surdej, Jean, 1K
Szemendera, Ludovic, 1A, 32
Tallon, Michel, 0Z, 1H, 3D
Tallon-Bosc, Isabelle, 1H, 3D
Tamblay, Richard, 1Z
Tamura, Motohide, 3F
Tapia, Mario, 1Z
Ten Brummelaar, Theo A., 03, 1K, 1L, 1O, 24, 3V
Tepper, Jan, 19, 31, 36
Ter Horst, R., 0A
Terrien, Ryan, 2G
Thévenin, F., 3Q
Thibault, Éric, 0Z, 1D, 1E, 3D, 3K, 3N
Thomson, Robert R., 18, 19, 1N, 35
Tintori, Matteo, 42
Tokovinin, Andrei, 0K
Tristram, Konrad R. W., 0R, 1K, 1Z
Tromp, N., 0A
Tucker, Carole, 0T
Conference Committee

Symposium Chairs

Colin Cunningham, UK Astronomy Technology Centre
(United Kingdom)
Masanori Iye, National Astronomical Observatory of Japan (Japan)

Symposium Co-chairs

Allison A. Barto, Ball Aerospace & Technologies Corporation
(United States)
Suzanne K. Ramsay, European Southern Observatory (Germany)

Conference Chairs

Fabien Malbet, Institut de Planétologie et d’Astrophysique de Grenoble (France)
Michelle J. Creech-Eakman, New Mexico Institute of Mining and Technology (United States)
Peter G. Tuthill, The University of Sydney (Australia)

Conference Program Committee

Ellyn K. Baines, U.S. Naval Research Laboratory (United States)
Fabien Baron, Georgia State University (United States)
Jean-Philippe Berger, European Southern Observatory (Germany)
Elliott P. Horch, Southern Connecticut State University (United States)
Takayuki Kotani, National Astronomical Observatory of Japan (Japan)
Lucas Labadie, Universität zu Köln (Germany)
Keiichi Ohnaka, Universidad Católica del Norte (Chile)
Claudia Paladini, Université Libre de Bruxelles (Belgium)
Jayadev K. Rajagopal, National Optical Astronomy Observatory (United States)
Andrew Skemer, The University of Arizona (United States)
Isabelle Tallon-Bosc, Centre de Recherche Astronomique de Lyon (France)

Session Chairs

1 Facilities I
Ellyn K. Baines, U.S. Naval Research Laboratory (United States)

2 Facilities II
Ellyn K. Baines, U.S. Naval Research Laboratory (United States)
3 Instruments
David F. Buscher, University of Cambridge (United Kingdom)

4 Science I
Fabien Baron, Georgia State University (United States)

5 Aperture Masking I
Fabien Baron, Georgia State University (United States)

6 Aperture Masking II
Fabien Baron, Georgia State University (United States)

7 Speckle Interferometry
Andrew J. Skemer, University of California, Santa Cruz (United States)

8 Science II
Andrew J. Skemer, University of California, Santa Cruz (United States)

9 Intensity Interferometry
Elliott P. Horch, Southern Connecticut State University (United States)

10 Science III
Elliott P. Horch, Southern Connecticut State University (United States)

11 Science IV
Lucas Labadie, Universität zu Köln (Germany)

12 Space Interferometry
Lucas Labadie, Universität zu Köln (Germany)

13 Science V
Henrique R. Schmitt, U.S. Naval Research Laboratory (United States)

14 Data Processing I
Henrique R. Schmitt, U.S. Naval Research Laboratory (United States)

15 Data Processing II
Henrique R. Schmitt, U.S. Naval Research Laboratory (United States)

16 Science VI
Henrique R. Schmitt, U.S. Naval Research Laboratory (United States)

Poster Previews
Fabien Malbet, Institut de Planétologie et d’Astrophysique de Grenoble (France)
17 Science VII
Michelle J. Creech-Eakman, New Mexico Institute of Mining and Technology (United States)

18 Detectors for Interferometry
Michelle J. Creech-Eakman, New Mexico Institute of Mining and Technology (United States)

19 Science VIII
John D. Monnier, University of Michigan (United States)

20 Astrophotonics
John D. Monnier, University of Michigan (United States)

21 Science IX
Gilles Duvert, Institut de Planétologie et d’Astrophysique de Grenoble (France)

22 Interferometry Imaging
Gilles Duvert, Institut de Planétologie et d’Astrophysique de Grenoble (France)

23 Fringe Tracking
Christopher A. Haniff, University of Cambridge (United Kingdom)

24 Future Instruments
Christopher A. Haniff, University of Cambridge (United Kingdom)

25 Planet Formation Imager
Peter G. Tuthill, The University of Sydney (Australia)

26 Planet Formation Imager II
Peter G. Tuthill, The University of Sydney (Australia)

27 Interferometry Community
Michelle J. Creech-Eakman, New Mexico Institute of Mining and Technology (United States)

Closing Remarks
Michelle J. Creech-Eakman, New Mexico Institute of Mining and Technology (United States)
Introduction

Optical and infrared interferometry continues to rapidly develop and deliver unique scientific reach to astrophysics. As astronomy, in general, goes through a transformative phase, our field has encountered both opportunities and challenges. The primary goals of this conference were to allow the attendees to learn firsthand about the exciting capabilities operational at facilities across the globe and to discuss the future prospects for interferometry in technology and instrumentation. Here, the SPIE meeting plays a unique role as the singular venue that brings together interferometrists from the world over.

For this meeting in Edinburgh, key themes were the burgeoning scientific productivity encapsulated in many invited reviews, the emergence of new instrumentation (particularly from photonics), and the continuing development of image reconstruction techniques. Closure-phase measurements and nulling results from large aperture telescopes continue to help push astrophysical investigations of fainter objects. New instrumentation will bring all these aspects together in the very near future, with increasing interest from non-specialists in interferometry thanks to general user facilities and data-reduction software.

This conference has primarily focused on the latest innovations in technology and engineering for ground- and space-based interferometry in the optical and infrared, including new instrumentation, techniques and software. For example, we had many contributions on integrated optics and detectors. Marquee scientific results in areas ranging from young stellar objects to active galactic nuclei have been made possible with milli- and micro-arcsecond angular resolution.

In several important domains, the distinction between interferometry and aperture masking has been dissolving for some years. The newest generation of extremely large telescopes occupy some middle ground where the field of high-resolution imaging with a single aperture—traditionally aperture masking or speckle interferometry—has been powerfully augmented by the advent of high-performing adaptive optics. Although the major surge in interest in space interferometry from the previous decade has abated, there are several smaller missions from balloons to cubesats that are generating significant interest and keeping these ideas alive.

We had an interesting community discussion that allowed introspection and brainstorming for the intermediate and long-term future of interferometry. Scientific and technical opportunities, priorities and new directions in times of limited funding were major themes. This volume presents a total of 102 contributions (a similar total to recent meetings - 96 in 2012, 116 in 2014).

We would like to thank all oral contributors, invited talks and posters who made this conference an important milestone in our domain.

Fabien Malbet
Michelle J. Creech-Eakman
Peter G. Tuthill