The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510605114

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
Contents

> Authors

> Conference Committee

> Introduction

Part One

MOLECULAR SPECTROSCOPY AND ATMOSPHERIC RADIATIVE PROCESSES

10035 02	Mathematical simulation of brightness fields in broken clouds for observations from Earth's surface and from space in plane and spherical atmospheric models (Invited Paper) [10035-176]
10035 03	The impact of surface heat fluxes on plankton population dynamics during the thermal bar in a freshwater lake [10035-28]
10035 04	A determination of dipole moment function parameters of sulfur dioxide [10035-86]
10035 05	A validation of spectral line parameters of hydrogen sulfide [10035-89]
10035 06	The water vapor absorption in the long wave wing of the rotational band [10035-136]
10035 07	Classification of patients with broncho-pulmonary diseases based on analysis of absorption spectra of exhaled air samples with SVM and neural network algorithm application [10035-137]
10035 08	Distributed architecture of information system for analysis and forecast of natural and climatic processes [10035-138]
10035 09	Qualitative analysis of model chemical kinetics equations for nucleation of molecular complexes in water vapor [10035-140]
10035 0A	Kalman filtering in the problem of noise reduction in the absorption spectra of exhaled air [10035-143]
10035 0B	Possibilities of laser spectroscopy for monitoring the profile dynamics of the volatile metabolite in exhaled air [10035-146]
10035 0C	Systematization of graphically plotted published spectral functions of weakly bound water complexes [10035-151]
10035 0D	The current status of the W@DIS information system [10035-158]
10035 0E	Improved Dunham coefficients of HCl isotopologues [10035-160]
10035 0F The optical radiation transfer in layered atmosphere [10035-165]
10035 0G Development of distributed file system for storing weather data [10035-167]
10035 0H The D2O absorption spectra in SiO2 airgel pores: technical features of treatment [10035-168]
10035 0I Comparison of two water vapor continuum models in simulation of the longwave fluxes taking into account absorption in cirrus clouds [10035-184]
10035 0J Water vapor line broadening induced by hydrogen and helium pressure [10035-195]
10035 0K Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands [10035-231]
10035 0L Broadening and shift coefficients for H2O-H2 system in 8600- 9000 cm⁻¹ infrared spectral region [10035-234]
10035 0M Line broadening of carbon dioxide confined in nanoporous aerogel [10035-235]
10035 0N Absorption spectra of ethylene in different SiO2/Al2O3 aerogels [10035-242]
10035 0O Critical evaluation of measured rotation-vibration line positions of ¹⁴N¹⁶O in the X²π state using Ritz method [10035-249]
10035 0P GOSAT TIR and SWIR spectra analysis for CO2 and CH4 profiles retrieval [10035-258]
10035 0Q Fluorescent and optical properties of sunflower leaves grown under oil pollution [10035-271]

OPTICAL RADIATION PROPAGATION IN THE ATMOSPHERE AND OCEAN

10035 0R Solving applied atmospheric optics and acoustics problems by the Monte Carlo method (Invited Paper) [10035-107]
10035 0S Excitation of local surface modes in semiconductor nanoparticles in visible and near UV regions (Invited Paper) [10035-85]
10035 0T Estimation of the influence of a cloudy field on satellite observation of the Earth’s surface through a single cloud gap [10035-4]
10035 0U Variations in radio signal phase at propagation in the parabolic layer of disturbed ionospheric plasma [10035-6]
10035 0V Laser beam distortion propagation through a shock wave arising in a supersonic flows past turret in a homogeneous medium [10035-8]
10035 0W Coherence deficiency of vortex Bessel beams in turbulent atmosphere [10035-12]
10035 0X Recognition of whistler patterns in VLF signal spectrograms [10035-16]
10035 0Y Effects of polarization of optical radiation in the problem for finding refractive indices of layered medium [10035-18]

10035 0Z Monte Carlo method for non-stationary radiative transfer equation in inhomogeneous media [10035-20]

10035 10 The history of a global spherical model of the solar radiation transfer in the Earth's atmosphere [10035-33]

10035 11 Integral momenta of Bessel-Gaussian beams in randomly inhomogeneous medium [10035-35]

10035 12 Method of estimation of the cross-wind velocity from statistics of energy centroids coordinates of binocular images of topographic objects [10035-36]

10035 13 On accuracy of radiometric calibration of hyperspectral visible/NIR satellite remote sensing instruments above natural surfaces [10035-42]

10035 14 Diffraction of short pulsed Laguerre-Gaussian beams [10035-50]

10035 15 Statistics of pulsed Laguerre-Gaussian beams in a turbulent atmosphere [10035-52]

10035 16 Coherence degree of a Laguerre-Gaussian laser beam backscattered on a diffuse target in turbulent atmosphere [10035-53]

10035 17 Photophoresis of fractal-like soot aggregates: possible atmospheric applications [10035-62]

10035 18 Determining the bottom surface according to data of side-scan sonars [10035-63]

10035 19 Interannual and seasonal variability of atmospheric inhomogeneities from satellite systems data and it's correlation with atmosphere monitoring [10035-65]

10035 1A Spatial and temporal characteristics of an adaptive optics system [10035-67]

10035 1B Numerical model of turbulence with non-Kolmogorov and anisotropic density spectrum of phase fluctuation [10035-68]

10035 1C Improving the reliability of the method calculating the speed of cross-wind transport of turbulent distortion of optical radiation [10035-69]

10035 1D Backscatter amplification lidar testing by the image jitter sensor [10035-72]

10035 1E Automatic processing and interpretation of backscatter ionosphere sounding ionograms [10035-73]

10035 1F Use of the BSA-lidar for the turbulent spatial and temporal variability in the atmospheric surface layer [10035-74]

10035 1G Dispersion and spatial autocorrelation of the phase and group signal paths in a randomly inhomogeneous medium with regular refraction [10035-76]
Coherence degree of diffraction-free beams in turbulent atmosphere [10035-78]

All-fiber coherent Doppler lidar [10035-79]

Estimation of effective height changes of Earth-ionosphere waveguide by VLF radio signals phase variations during a solar eclipse [10035-81]

Seasonal variability of the astronomical seeing on the Large Solar Vacuum Telescope [10035-95]

Full-field speckle correlometry of non-stationary systems with temperature-dependent scatter dynamics [10035-97]

Stochastic simulation of 3D distributions for laser pulses scattered in optical media [10035-98]

Monte Carlo simulation of specific features of radiation regime in clouds caused by underlying surface [10035-99]

Analysis of the position angles polarization ellipse and coefficient ellipticity of the Schumann resonance in the daily-season cycle observations [10035-100]

Some approaches to describe the vertical structure of air refraction index variations [10035-106]

Coherence of optical waves at conic focusing in a turbulent atmosphere [10035-112]

Influence of atmospheric turbulence on quality of multichannel laser radiation and correction for distortion [10035-125]

Site selection for modern ground based large telescopes [10035-117]

Calculation of large cloud formations vector movement based on satellite data [10035-127]

The suitability of the approximation criterion on the first output from the area comparison for distribution probability density of fluctuations of the harmonic signal in Gaussian random noise [10035-128]

Influence of errors in assignment of the optical atmospheric parameters on results of reconstruction of the Earth's surface reflection coefficients from satellite measurements in the visible and near-IR ranges [10035-141]

Features of hyperspectral approach in remote sensing in the region of the Arctic [10035-150]

Development of experimental methods of ecological monitoring using femtosecond lidar systems [10035-156]

Development of the phase method of measurements of the atmospheric turbulence profile in observations of laser guide stars [10035-169]
Structure of turbulent air motion inside primary mirror shaft at Siberian Lidar station of IAO SB RAS: experiment and simulation [10035-173]

Statistical estimates of time distribution of the monostatic sodar signal intensity [10035-174]

Estimate of the effect of polarization account on the reflection coefficient of the Earth’s surface for atmospheric correction of satellite data [10035-181]

Development of IT integration tools for problems of thematic processing of Earth remote sensing data [10035-189]

Spectral range for analysis of natural gas by Raman spectroscopy [10035-190]

Modeling of kilometers radio wave propagation on high latitudes in summer and winter time [10035-191]

Seasonal change of spatial distribution of transport acoustic noise in Tomsk [10035-194]

The influence of plasmon resonance on the decrease of resonator-less laser generation thresholds [10035-201]

Dispersion of surface plasmon-polaritons in weakly periodic structures [10035-202]

Spatial profiles of statistical moments for collimated laser beams at the end of long atmospheric path [10035-203]

Reflectivity dispersion characteristics of the composite films on the metal substrate [10035-204]

Light fields in the clear natural water as an evidence of own water heterogeneity [10035-206]

Method of evaluation of the radial distribution of the refractive index spectrum in axisymmetric supersonic jet from laser transillumination results [10035-207]

Processing of the information from side-scan sonar [10035-216]

Approbation of method of IR-radiation detection based on ultrasonic thermometry [10035-221]

Influence of energy and repetition rate of the femtosecond laser pulses on the spectral and temporal characteristics of plasma in laser induced breakdown spectroscopy of aqueous solutions [10035-224]

Fluctuations of the orbital angular momentum of vortex laser beam in a turbulent atmosphere: dependence on the turbulence strength and beam parameters [10035-229]

Active mode radiosounding on ionosonde TOMION [10035-233]

Computer simulation of scalar vortex and annular beams LG0l beams in time-varying random inhomogeneous media [10035-237]
Multipurpose lidar investigations in the atmosphere and ocean: overview of studies included in the SPIE conference proceedings volume 10035.

10035 2I Monitoring electromagnetic fields in the frequency band from 1 kHz to 30 MHz on the ionosonde TOMION [10035-241]

10035 2J Reaction of the F2 region ionosphere on geomagnetic storms according to the data of the Tomsk ionospheric station [10035-244]

10035 2K The influence of energy and temporal characteristics of laser radiation on the structure of multiple filamentation domain in glass [10035-245]

10035 2L Postfilamentation light channels in the air [10035-248]

10035 2M Postfilamentation channels of terawatt pulses Ti: sapphire-laser in distribution on 150 meter path [10035-251]

10035 2N The influence of titanium dioxide to nonlinear optical properties of carbon quantum dots [10035-256]

10035 2O Random wandering of Airy vortex beam propagating in a turbulent atmosphere [10035-272]

10035 2P Statistical characteristics of common and synthesized vortex beams in a turbulent atmosphere [10035-254]

10035 2Q Possibilities of crosswind profiling based on incoherent imaging [10035-255]

10035 2R Estimation of optimal conditions for laser beam focusing in a turbulent atmosphere from a target image [10035-257]

OPTICAL INVESTIGATION OF ATMOSPHERE AND OCEAN

10035 2S A statistical model for optical radiation transfer in the ocean-atmosphere system (Invited Paper) [10035-260]

10035 2T Application of Raman lidar for the spatial and vertical distribution of aerosol and water vapor in Beijing, China (Invited Paper) [10035-185]

10035 2U Backscatter ratios using lidar sounding over Tomsk and Hefei (Invited Paper) [10035-110]

10035 2V Properties of cirrus cloud by a three wavelength Raman Mie polarization lidar: observation and model match (Invited Paper) [10035-108]

10035 2W Measurement of snow characteristics using optical precipitation gauge [10035-2]

10035 2X Modeling diagnostics of trioxide dialuminum content in gas-aerosol medium [10035-9]

10035 2Y Retrieval of concentrations of seawater natural components from reflectance spectrum [10035-10]

10035 2Z Technique for determination of the single scattering albedo of submicron aerosol in the approximation of lognormal size distribution of black carbon [10035-19]
10035 30 Modified aethalometer for monitoring of black carbon concentration in atmospheric aerosol and technique for correction of the spot loading effect [10035-21]

10035 31 The Black Sea IOPs based on SeaWiFS data [10035-24]

10035 32 A method of remote determination of the suspended matter concentration in seawater on the effective wavelength of upwelling radiation [10035-25]

10035 33 Comparison between the physical-optics approximation and exact methods solving the problem of light scattering by ice crystals of cirrus clouds [10035-26]

10035 34 Investigation of microphysical characteristics and chemical composition of near-ground aerosol in Barentsburg (Spitsbergen) in the spring and summer seasons of 2011-2015 [10035-27]

10035 35 Inter-annual dynamics of changes in hydrooptical characteristics of ecosystem of the Yenisei basin [10035-29]

10035 36 Method for retrieval of vertical profiles of wind from Stream Line lidar data with allowance that the noise component of recorded signal differs from white noise [10035-37]

10035 37 Doppler lidar observation of the gravity waves near Lake Baikal in the summer of 2015 [10035-38]

10035 38 Differences in seasonal average concentrations of aerosol and Black Carbon and particle size distributions from the data of monitoring in Tomsk and under background conditions in 2014-2015 [10035-39]

10035 39 Spatiotemporal visualization of wind turbulence in the atmospheric boundary layer from measurements by the Stream Line lidar [10035-40]

10035 3A Formaldehyde integral content in troposphere of Moscow region: preliminary results of 6 years of measurements using DOAS technique [10035-41]

10035 3B Stereoscopic ground-based determination of the cloud base height: camera position adjusting with account for lens distortion [10035-43]

10035 3C A layout of two-port DOAS system for investigation of atmospheric trace gases based on laboratory spectrograph [10035-44]

10035 3D Comparison of assessment techniques of fine and coarse component aerosol optical depth of the atmosphere from measurement in the visible spectrum [10035-46]

10035 3E Impact of urban traffic to diurnal and by day of week variations of aureole scattering phase function [10035-47]

10035 3F Investigation of relationship between the characteristics of atmospheric aerosol in complex experiment city-background in the middle Urals in 2014 [10035-48]
Analysis of variability and the interrelations between characteristics of atmospherics aerosols according to data of multiyear measurements along eastern route of Russian Antarctic expeditions [10035-49]

Part Two

Contactless study of the flame structure during diffusion combustion for certain types of liquid hydrocarbon fuels [10035-51]

Effect of low energy fluctuations on the spectrum of the temperature change in flame [10035-54]

Calibration of the thermal imager during the experimental study of the plasma jet impact on CO$_2$ [10035-56]

Estimation of the turbulence scales in flame during diffusion diesel fuel combustion [10035-57]

Investigations of the optical properties of cirrus clouds crystals in the case of predominantly azimuthal orientation [10035-64]

Optical characteristics of Middle East arid aerosol and statistics of its registration over the Black Sea [10035-71]

Open path measurement of atmospheric pollutants using DOAS method [10035-84]

Retrieving the microphysical properties of ice clouds from simultaneous observations by a lidar and an all-sky camera [10035-87]

Influence of cirrus clouds ice crystal’s deformation on the backscattering matrix calculated within the physical optics approximation [10035-88]

Long-term measurements of characteristics of stratospheric aerosol layer at Siberian lidar station in Tomsk [10035-93]

Analysis of ground-based and satellite observations of atmospheric gas pollutants over Tomsk region under smoke mist conditions during summer 2012 [10035-94]

A technique for estimation of the aerosol optical constants and microphysical parameters from the data of scattering and extinction in visible and near IR wavelength range [10035-105]

Altitude dependence of intensity fluctuations of the laser beam crosses the rotating flame [10035-113]

Software complex for processing the lidar data obtained at small lidar station of IAO SB RAS [10035-116]

Validation of lidar measurements of temperature in the lower stratosphere using aerological and satellite data [10035-118]
Modeling of measurements of temperature in the middle atmosphere by spaceborne UV lidar [10035-120]

Optical and microphysical properties of cirrus clouds retrieved from combined lidar and radar measurements [10035-126]

Integrated monitoring of the atmospheric boundary layer dynamics by remote sensing methods in June 2015 in Tomsk [10035-131]

Information-algorithmic basis of a program complex for forest fire danger estimation [10035-134]

Climatology of ozone concentrations at separate altitude levels over Tomsk and Sodankylä according to Aura MLS data for 2005-2015 [10035-139]

Estimate of microstructure parameters of the coarsely dispersed aerosol based on their statistical relationships with spectral measurements of the aerosol optical thickness [10035-144]

Empirical algorithm for estimation of the optical constants of absorbing aerosol [10035-145]

Construction and analysis of long-term series of aerosol microstructure parameters reconstructed from the data of solar photometry in Tomsk [10035-147]

Humidity effect on occurrence of ozone anomaly in Arctic in April 2011 according to Aura MLS data [10035-148]

Investigations of the seawater beam attenuation distribution nearby wastewater discharge on the Herakleian Peninsula shelf [10035-149]

The first estimates of midges extinction coefficient of optical radiation for background conditions of summer of Western Siberia [10035-155]

Effect of superweak modulated IR radiation on vegetative regulation of heart rhythm of children with localized forms of pulmonary tuberculosis [10035-159]

The technique of synchronous solar radiation measurements while lidar sensing of Ci clouds [10035-163]

Chemical composition of atmospheric aerosols over background areas of the southern part of Western Siberia observed during the IAO Complex Atmospheric Radiation Experiment carried out in December 2015 [10035-164]

Dependence of polarization characteristics of the double scattering lidar return from liquid water content of clouds [10035-180]

Using diffuse solar radiation for estimate of Cu cloud amount [10035-183]

LIDAR complex software [10035-186]

Vertical structure of the aerosol fields of the atmosphere in the period of forest fires over Lake Baikal in 2015 [10035-187]
10035 4E	Investigation of a possibility of enhancement of Raman signals from gaseous medium due to plasmon resonance on the Al-grating [10035-188]
10035 4F	Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant [10035-193]
10035 4G	Long-term variations in submicron aerosol pollution in 2003–2015 in the atmosphere over Beijing [10035-196]
10035 4H	Geochemical peculiarities of soils in Tomsk areas of industrial enterprises locations [10035-197]
10035 4I	Boundary layer in western Siberia according to the data of lidar measurements in Tomsk [10035-208]
10035 4J	Automation of processing and interpretation of experimental data on polarization laser sensing of high-level clouds [10035-209]
10035 4K	Dynamic topography of the vector beam profile at the atmospheric path output [10035-211]
10035 4L	Registration system pulse mode avalanche photodiode photon counting with RS-485 interface [10035-215]
10035 4M	Pulsed light source for nephelometric with optimized parameters in the scattering volume [10035-217]
10035 4N	Possibility of heating safety glasses in optoelectronic devices [10035-218]
10035 4O	Possible to reduce the influence of the background in the measurement of atmospheric transparency nephelometry [10035-219]
10035 4P	Imitation of several layers of clouds to calibrate ceilometer [10035-214]
10035 4Q	Portable meter calibration meteorological visibility range [10035-213]
10035 4R	Empirical orthogonal functions and its modification in the task of retrieving of the total amount \(\text{CO}_2 \) and \(\text{CH}_4 \) with help of satellite Fourier transform spectrometer GOSAT (TANSO-FTS) [10035-210]
10035 4S	Investigation of laser plasma temperature and spectral line broadening in femtosecond laser plasma on the surface of barium water solution [10035-222]
10035 4T	Lidar sensing atmosphere by gigawatt femtosecond laser pulses in the continent-ocean transition zone [10035-223]
10035 4U	An effect of uncertainties of input data on determining the thermodynamic parameters of high-temperature carbon dioxide by a polynomial approximation method [10035-225]
10035 4V	Seasonal and interannual variations of aerosol microphysical characteristics in the atmosphere of Primorskii krai, Russia in 2010-2015 [10035-226]
Seasonal and interannual dynamics of the optical characteristics of aerosol in the coastal region according to the photometric sensing for the period from 2010 to 2015 [10035-227]

Investigation of Asian dust from spectral characteristics of solar radiation scattering and absorption in the atmosphere [10035-228]

Light-induced thermodiffusion in two-component liquid [10035-230]

Results of synchronous measurements on meteorological parameter pulsations in the atmospheric surface layer [10035-232]

The effect of droplet cloudy microstructure on the polarization characteristics of double scattering lidar return [10035-238]

Determining the backscattering phase matrix of an aircraft condensation jet [10035-250]

A numeric estimate of the sensitivity of the land-based lidar echo signal to statistical variations of the aerosol scattering coefficient in a cloudless atmosphere [10035-261]

A temporal stability study of calibration functions coefficients in the pure rotational Raman lidar technique during tropospheric temperature measurements [10035-262]

Lidar detector of explosive vapors [10035-265]

Energy density of laser radiation as a factor limiting the sensitivity of the Raman-lidar method [10035-267]

Robust nonparametric estimates of spatiotemporal dynamics of wind velocity from data of minisodar measurements [10035-268]

Analysis of video for the passive method of wind estimations [10035-269]

DIAL-DOAS technique for laser sounding of the gaseous composition of the atmosphere [10035-276]

Siberian lidar station: instruments and results [10035-277]

Targeted monitoring strategy based on variational data assimilation and decomposition of processes scales (Invited Paper) [10035-91]

Ozone anomaly of 2011 in the northern hemisphere [10035-275]

Airglow intensity variations affected by acoustic-gravity waves at high latitudes [10035-1]

To the theory of influence of the convection currents on the temperature distribution in the Earth's atmosphere [10035-5]

Study of forest fires seasonal dynamics in Yakutia on remote sensing data [10035-7]
Generation of emissions in red and green lines of atomic oxygen with due regard to energetic electron precipitation in the night time mid-latitude ionosphere [10035-11]

Anomalies of acoustic and electromagnetic fields in a seismically active region [10035-13]

Magnetically oriented irregularities of the ionosphere and super dual auroral radar network (SuperDARN) [10035-14]

Lightning according to electromagnetic field observations in Buryatiya [10035-15]

Algorithm of search for possible areas of lightning activity affecting whistler occurrence in a defined region [10035-17]

Study of NDVI vegetation index in East Siberia under global warming [10035-22]

Understanding of counter-gradient heat flux in lower atmosphere based on the second order RANS-approach [10035-23]

Mesoscale structure of tropical cyclones in the northwestern part of the Pacific ocean according to the data of the WWLLN [10035-30]

Correlation of annual average seasonal values of temperature within the atmospheric boundary layer and amount of stratiform low clouds [10035-31]

Long-term changes in average seasonal surface air temperature over Siberia [10035-32]

New cross-platform control software for Brewer Spectrophotometer [10035-34]

Simulation of solar radiative transfer in the Earth atmosphere taking into account the underlying surface anisotropy [10035-45]

Lidar investigations of the scattering of the upper and middle atmosphere [10035-55]

Influence of lightning discharges and geomagnetic activity variation rate on currents in buried pipelines and pipe-ground potential [10035-58]

Calculation of wind profiles using satellite imagery of smoke plumes [10035-59]

On the thermal influence of thermokarst lakes on the subsea permafrost evolution [10035-60]

Specialized aerosol solver for calculation of photophoretic motion characteristics of soot aggregates [10035-61]

Local inhomogeneity of the magnetic field as a possible factor of influence on the human [10035-66]

Analysis of polar stratospheric cloud observations at Tomsk in January 2016 [10035-70]

Dynamic parameters of the troposphere at occurrence of hazardous weather phenomena in the Black Sea region [10035-75]
The features of modeling of radiation forcing on the climate in the Arctic region

The influence of solar activity on the seasonal variation of the temperature of high latitude mesopause over Yakutia

Spatial and temporal variations of lightning activity in North Asia in 2009-2014

Estimation smoldering front parameters located on the peat surface using methods of thermography

Features of the elemental composition of snow cover in the area of production primary aluminum emissions

Probable nature of Chizhevsky’s “Z-factor” on example of a rare solar event

Methane emission from Western Siberia’s wetland ecosystems in the first half of the XXI century

Remote detection of raised radioactivity in gaso aerosol release from Beloyarsk nuclear power plant

Forecast of icing zones using possibilities of hydrodynamic simulation for the atmospheric boundary layer

Natural and forced under-ice convection

Electric quantities of surface atmosphere in adverse weather conditions

Modelling consideration of amplitude variations of signals of lightning discharges with the availability of disturbances in the earth-ionosphere waveguide

Assessment of changes in hydrology of Siberia in the XXI century

Investigation of variability of the vertical stratification of background aerosol over Tomsk in 2015

Scenario studies of local atmospheric circulations in the Krasnoyarsk region

Lidar investigations of thermal regime of the stratosphere over Tomsk in 2015

Numerical study of direct variational algorithm for assimilation of atmospheric chemistry data into transport and transformation model

Vertical ozone flux in background area of Tomsk region

Interaction of smoldering branches and pine bark firebrands with fuel bed at different ambient conditions

Evaluation of satellite data on soil moisture in the southwest region of the Baikal
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10035 6J</td>
<td>Thematic virtual research environment for analysis, evaluation and prediction of global climate change impacts on the regional environment</td>
<td>10035-129</td>
</tr>
<tr>
<td>10035 6K</td>
<td>Effects of atmospheric inversion and stratification in the simulation of gravity currents over steep terrain</td>
<td>10035-130</td>
</tr>
<tr>
<td>10035 6L</td>
<td>Estimation the height of ozone formation in the atmospheric boundary layer</td>
<td>10035-132</td>
</tr>
<tr>
<td>10035 6M</td>
<td>The analysis of influence of atmospheric stratification on the emission plume from operated Beloyarsk NPP</td>
<td>10035-133</td>
</tr>
<tr>
<td>10035 6N</td>
<td>The forecast of the spatial position of convective cells using a data by global SL-AV NWP model</td>
<td>10035-142</td>
</tr>
<tr>
<td>10035 6O</td>
<td>Estimation of the average values of the vertical turbulent diffusion coefficient for areas with different natural and climatic conditions</td>
<td>10035-152</td>
</tr>
<tr>
<td>10035 6P</td>
<td>Validation of the RegCM4/CLM4.5 regional climate modeling system over the Western Siberia</td>
<td>10035-153</td>
</tr>
<tr>
<td>10035 6Q</td>
<td>Threshold values of characteristics of atmosphere instability during thunderstorms</td>
<td>10035-154</td>
</tr>
<tr>
<td>10035 6R</td>
<td>Atmospheric CH₂O and NO₂ contents during severe heat waves and wildfires in European Russia in 2010 and Siberia in 2012</td>
<td>10035-157</td>
</tr>
<tr>
<td>10035 6S</td>
<td>Radio wave propagation over sea ice covering with varying thickness</td>
<td>10035-162</td>
</tr>
<tr>
<td>10035 6T</td>
<td>Multilevel ultrasonic complexes for monitoring of meteorological and turbulent parameters in the ground atmosphere</td>
<td>10035-166</td>
</tr>
<tr>
<td>10035 6U</td>
<td>Frequency structure infrasound signals from terrestrial explosions low power</td>
<td>10035-170</td>
</tr>
<tr>
<td>10035 6V</td>
<td>Seasonal-daily changes in the parameters of the infrasonic pressure fluctuations in a suburban area</td>
<td>10035-171</td>
</tr>
<tr>
<td>10035 6W</td>
<td>Preliminary results of a comparison of the rotational temperature of the hydroxyl at the height mesopause measured at two different latitudes</td>
<td>10035-172</td>
</tr>
<tr>
<td>10035 6X</td>
<td>Meteorological optical range predictability with the use of high resolution mesoscale models</td>
<td>10035-175</td>
</tr>
<tr>
<td>10035 6Y</td>
<td>Analysis of temporal dynamics of the standard deviation of three wind velocity components from the data of acoustic sounding</td>
<td>10035-177</td>
</tr>
<tr>
<td>10035 6Z</td>
<td>Satellite data assimilation in global numerical weather prediction model using Kalman filter</td>
<td>10035-179</td>
</tr>
<tr>
<td>10035 7O</td>
<td>Geoeocological assessment of mercury load in the impacted area of the thermal power plant of Seversk</td>
<td>10035-182</td>
</tr>
</tbody>
</table>
Global meteorological forecast data and instrumental measurement application for simulation of mesoscale atmospheric boundary layer processes [10035-192]

Application of different parameterization schemes of heat and moisture exchange into the underlying surface for the mesoscale model [10035-198]

Evaluation of the complex influence of natural gradient magnetic fields on the dynamics of human brain electrical activity [10035-200]

Detecting the small-scale ionospheric irregularities based on GNSS data [10035-205]

Do the processes in near-earth space influence weather and climate? [10035-212]

Territorial peculiarities of aircraft icing for Tomsk and Novosibirsk International airports [10035-236]

The development of algorithms for atmospheric methane distribution retrieval from IASI/METOP spectra and their validation with MACC/ECMWF reanalysis data [10035-239]

Methane content in the mid-upper troposphere of Western Siberia in 2003-2015: results of the AIRS/AMSU-Aqua [10035-243]

Investigation of temperature inversions in the atmospheric boundary layer based on data by temperature profiler MTP-5 [10035-246]

Impact of Atlantic multidecadal variability on anomalous temperature regimes formation in the Northern Eurasia [10035-247]

Registration of ionospheric response to operation of the engine of spacecraft ”Progress” according to GNSS data [10035-259]

Electrophysical characteristics of water of the rivers of Siberia and Altai [10035-263]

The reflective properties of marsh vegetation at microwave frequencies [10035-264]

The linear dependence of Fm leaves of plants from the ratio of the total chlorophyll concentration to carotenoid concentration [10035-270]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

<table>
<thead>
<tr>
<th>Authors</th>
<th>CID Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afanasiev, A. L.</td>
<td>12, 4K, 57</td>
</tr>
<tr>
<td>Agafontsev, M. V.</td>
<td>3H, 3I, 3J, 3K, 62</td>
</tr>
<tr>
<td>Agapova, T. M.</td>
<td>2E</td>
</tr>
<tr>
<td>Akhlyostin, A.</td>
<td>0D</td>
</tr>
<tr>
<td>Akhmedshina, A. S.</td>
<td>79</td>
</tr>
<tr>
<td>Aksenov, Valeriy P.</td>
<td>2F, 2O, 2P</td>
</tr>
<tr>
<td>Aksenov, Valery A.</td>
<td>54</td>
</tr>
<tr>
<td>Alipova, Kseniya A.</td>
<td>62</td>
</tr>
<tr>
<td>Ammosov, P. P.</td>
<td>60, 6W</td>
</tr>
<tr>
<td>Ammosova, A. M.</td>
<td>60, 6W</td>
</tr>
<tr>
<td>Angarkhaeva, L. Kh.</td>
<td>24, 6S</td>
</tr>
<tr>
<td>Antipov, O. L.</td>
<td>1R</td>
</tr>
<tr>
<td>Antokhin, Pavel N.</td>
<td>3Y, 6G, 6L</td>
</tr>
<tr>
<td>Antokhina, O. Y.</td>
<td>6G, 6L</td>
</tr>
<tr>
<td>Antoshkin, L. V.</td>
<td>1C</td>
</tr>
<tr>
<td>Anufriev, I. S.</td>
<td>3H</td>
</tr>
<tr>
<td>Anufriev, Z.</td>
<td>0D</td>
</tr>
<tr>
<td>Apeksimov, D. V.</td>
<td>2K, 2L, 2M</td>
</tr>
<tr>
<td>Argunov, Vyacheslav V.</td>
<td>6A</td>
</tr>
<tr>
<td>Arsenyan, T. I.</td>
<td>4K</td>
</tr>
<tr>
<td>Arshinov, Mikhail Yu.</td>
<td>3B, 3Y</td>
</tr>
<tr>
<td>Averkiev, A. A.</td>
<td>0F</td>
</tr>
<tr>
<td>Ayurov, D. B.</td>
<td>6S</td>
</tr>
<tr>
<td>Babanin, Eu. A.</td>
<td>28</td>
</tr>
<tr>
<td>Babiy, M. Yu.</td>
<td>2E, 4S, 4T</td>
</tr>
<tr>
<td>Baikov, A. N.</td>
<td>47</td>
</tr>
<tr>
<td>Bakina, O. V.</td>
<td>ON</td>
</tr>
<tr>
<td>Baklykova, E. S.</td>
<td>5W, 64</td>
</tr>
<tr>
<td>Balin, Yuriǐ S.</td>
<td>2U, 3O, 3Y, 4D, 4I, 59</td>
</tr>
<tr>
<td>Banaškov, V. A.</td>
<td>0V, 12, 14, 15, 1D, 1F, 1I, 36, 37, 39, 4K, 57</td>
</tr>
<tr>
<td>Baranov, Nikolay A.</td>
<td>76</td>
</tr>
<tr>
<td>Baranovskiy, Nikolay V.</td>
<td>3Z</td>
</tr>
<tr>
<td>Barashkov, T. O.</td>
<td>5X</td>
</tr>
<tr>
<td>Barashkova, Nadezhda K.</td>
<td>67, 6X</td>
</tr>
<tr>
<td>Bart, Andrey A.</td>
<td>67, 6N, 6X, 71</td>
</tr>
<tr>
<td>Bashkev, Yu. B.</td>
<td>24, 5I, 6S</td>
</tr>
<tr>
<td>Baydarov, D. A.</td>
<td>6H</td>
</tr>
<tr>
<td>Bazhenov, O. E.</td>
<td>40, 44, 59</td>
</tr>
<tr>
<td>Belan, Boris D.</td>
<td>3B, 48, 49, 56, 6G, 6L</td>
</tr>
<tr>
<td>Belan, S. B.</td>
<td>46</td>
</tr>
<tr>
<td>Belikova, Marina Yu.</td>
<td>6N</td>
</tr>
<tr>
<td>Belov, Vladimir V.</td>
<td>0R, 0T, 1V, 20, 21, 22, 3Z</td>
</tr>
<tr>
<td>Belyakova, I. A.</td>
<td>47</td>
</tr>
<tr>
<td>Berešnev, S. A.</td>
<td>17, 5V</td>
</tr>
<tr>
<td>Biryukova, Yu. S.</td>
<td>2E, 4S, 4T</td>
</tr>
<tr>
<td>Bobrikov, A. A.</td>
<td>4V, 4W</td>
</tr>
<tr>
<td>Bobrovnikov, Sergey M.</td>
<td>54, 55, 59</td>
</tr>
<tr>
<td>Bocharov, A. A.</td>
<td>25</td>
</tr>
<tr>
<td>Bochko, D. A.</td>
<td>3U, 3V, 3W, 3X, 3O, 3C, 6E</td>
</tr>
<tr>
<td>Bogdanova, Julia V.</td>
<td>06</td>
</tr>
<tr>
<td>Bogdanova, S. B.</td>
<td>5D</td>
</tr>
<tr>
<td>Bogdevich, D. V.</td>
<td>2J</td>
</tr>
<tr>
<td>Bogoslovskiy, Nikolay N.</td>
<td>61, 6Z</td>
</tr>
<tr>
<td>Bogushevich, A. Ya.</td>
<td>6T</td>
</tr>
<tr>
<td>Bolbasova, L. A.</td>
<td>1P</td>
</tr>
<tr>
<td>Borisenko, Alex</td>
<td>6O</td>
</tr>
<tr>
<td>Borisov, A. V.</td>
<td>07, 0B</td>
</tr>
<tr>
<td>Borkov, Yu. G.</td>
<td>00</td>
</tr>
<tr>
<td>Borodin, A. S.</td>
<td>5W, 64</td>
</tr>
<tr>
<td>Borodina, Irina A.</td>
<td>61, 6Z</td>
</tr>
<tr>
<td>Borovoi, Anatoli G.</td>
<td>2U, 2V, 33, 3L, 3O, 3P, 3X</td>
</tr>
<tr>
<td>Borovskii, Alexander</td>
<td>13, 3A, 3C</td>
</tr>
<tr>
<td>Botygina, I. A.</td>
<td>08, 0G</td>
</tr>
<tr>
<td>Botygina, N. N.</td>
<td>1K</td>
</tr>
<tr>
<td>Bruchkovskii, I.</td>
<td>3C</td>
</tr>
<tr>
<td>Bryukhanova, Ilya D.</td>
<td>48, 4J, 51</td>
</tr>
<tr>
<td>Bryukhanova, V. V.</td>
<td>4A</td>
</tr>
<tr>
<td>Burkatovskaya, Yu. B.</td>
<td>20</td>
</tr>
<tr>
<td>Burlakov, V. D.</td>
<td>3Q, 59</td>
</tr>
<tr>
<td>Burnashov, A. V.</td>
<td>1X</td>
</tr>
<tr>
<td>Bychkov, Vasily V.</td>
<td>5R</td>
</tr>
<tr>
<td>Cheong, H. D.</td>
<td>4X</td>
</tr>
<tr>
<td>Chered’ko, Natalija N.</td>
<td>48</td>
</tr>
<tr>
<td>Chepelnin, A. X.</td>
<td>5X</td>
</tr>
<tr>
<td>Cherepanov, O. S.</td>
<td>56</td>
</tr>
<tr>
<td>Cherneva, V. N.</td>
<td>5X, 5G, 5I, 5J</td>
</tr>
<tr>
<td>Cherniakov, Sergei M.</td>
<td>5C</td>
</tr>
<tr>
<td>Chernov, D. G.</td>
<td>34, 38</td>
</tr>
<tr>
<td>Chesnokova, T. Yu.</td>
<td>02, 0I</td>
</tr>
<tr>
<td>Chulichkov, Alexey I.</td>
<td>3B</td>
</tr>
<tr>
<td>Churilova, T.</td>
<td>3I</td>
</tr>
<tr>
<td>Császár, A. G.</td>
<td>0D</td>
</tr>
<tr>
<td>Danova, T. E.</td>
<td>5Y</td>
</tr>
<tr>
<td>Davydov, Denis K.</td>
<td>3R</td>
</tr>
<tr>
<td>Deichuli, V. M.</td>
<td>0L, 0M</td>
</tr>
<tr>
<td>Dembelov, M. G.</td>
<td>24, 6S</td>
</tr>
<tr>
<td>Dementiev, Vitali</td>
<td>19</td>
</tr>
<tr>
<td>Demidova, K. E.</td>
<td>4H</td>
</tr>
<tr>
<td>Demyanov, V. V.</td>
<td>74</td>
</tr>
<tr>
<td>Dolgiǐ, S. I.</td>
<td>3Q, 59</td>
</tr>
<tr>
<td>Donchenko, Valeriy A.</td>
<td>26, 27, 29</td>
</tr>
<tr>
<td>Doroshkevich, Anton A.</td>
<td>4A, 50</td>
</tr>
<tr>
<td>Družhin, G. I.</td>
<td>5G, 5I, 5J</td>
</tr>
<tr>
<td>Duchko, A.</td>
<td>0H</td>
</tr>
<tr>
<td>Dudaryonok, Anna S.</td>
<td>0H, 0J</td>
</tr>
<tr>
<td>Dudorov, Vadim V.</td>
<td>2P, 2Q, 2R</td>
</tr>
<tr>
<td>Dzhola, A. V.</td>
<td>3A</td>
</tr>
</tbody>
</table>
Egorov, O. V., 04, 05, 2X, 4U
Elizarov, Alexey I., 1T, 3O
Emelyanov, N. M., 4U
Emelyanov, R. T., 0Q
Emilenko, Alexandr S., 4G
Engel, Marina V., 22, 3Z
Eremina, Anna S., 2Q, 2R
Erin, Sergei I., 6I, 6Z
Eyyuboglu, Halil Tanyer, 1R
Falits, Andrei V., 15, 37, 39, 3Y
Fateev, V. N., 3J
Fazliev, A. Z., 0C, 0D, 6J
Filimonenko, Ekaterina A., 4F
Filimonov, Grigorii A., 2F
Filinyuk, O. V., 47
Filtov, A. I., 6H
Firsov, K. M., 0I
Foerstner, J., 33
Fofonov, Aleksander V., 49
Gaar, S. A., 3I, 3J
Galanova, N. Y., 0G
Galileyskii, Victor P., 3O
Gavrilyeva, G. A., 60, 6W
Geiko, Pavel P., 3N
Genin, D. E., 2D
Gerasimov, V. V., 53
Gerasimova, L. O., 14, 15
Gladkikh, Vladimir A., 3Y
Gladkov, S. O., 5D
Glazkova, E. A., 0N
Golik, S. S., 2E, 2K, 2N, 4S, 4T
Golobokova, L. P., 34
Gorbatenko, Valentina P., 6N, 6Q
Gordov, E. P., 08, 6J
Gorlov, Evgeny V., 54, 55, 59
Goryachev, B. V., 0F
Greshko, E. I., 3A
Gribanov, Konstantin G., 0P, 77
Gridnev, Yu. V., 22
Grigorlev, G. Y., 0F
Grigorlev, P. E., 73, 75
Grigorlev, Yu. M., 5S
Grishin, A. I., 4M, 4N, 6Q, 4P, 4Q
Grozov, V. P., 1E
Gryazin, V. I., 17, 5V
Gryempo, E., 33
Gubin, A. V., 34
Holzworth, R. H., 5M
Ianchenko, N. I., 63
Iglakovskii, K. D., 1X, 2M
Illin, S. N., 5N, 5O
Ilyin, A. A., 2E, 4S
Imas, Ryoichi, 0P, 77
Isaev, A. Yu., 5G
Isaeva, A. A., 1L
Isaeva, E. A., 1L
Ishimoto, H., 33
Ishin, A. B., 7B
Ivanov, V. A., 3A
Ivanov, V. I., 4Y
Ivanova, G. D., 4Y
Ji, Chengli, 2V
Kabanov, A. M., 2K, 2L, 2M
Kabanov, Dmitriy M., 3D, 3G
Kabukova, Evgeniya G., 1N, 52
Kalchikhin, V. V., 2W
Kalinskaya, D. V., 3M
Kamardin, Andrei P., 3Y
Kan, V. A., 18
Kanaya, Y., 4A
Kanev, F. Yu., 1R
Kapegesheva, O. F., 6Y
Kapranov, V. V., 28
Kargin, A. B., 25
Kargin, B. A., 25, 52
Karimov, Rustam R., 1J, 5S
Kartashova, Elena S., 48
Kashirskii, D. E., 04, 05, 2X, 4U
Kashkin, V. B., 5B
Kashkina, T. V., 48
Katochek, Vladimir A., 26
Khe, V. K., 4Y
Khodzher, T. V., 34
Khurchak, A. P., 45
Khuriganova, O. I., 34
Khutorov, Vladislav, 19
Kikhtenko, Andrey V., 54
Kim, A., 0Z
Kim, D., 4X
Kirillov, N. S., 51
Kimov, Ilya V., 0R, 0T
Kistenev, Mikhail Yu., 4R
Klimov, R. K., 2G, 2I, 2J
Khamtnurova, M. Yu., 77
Khantanov, V. B., 24
Kharchenko, O. V., 58, 59
Kharenkov, Vladimir A., 26
Kolmakov, A. A., 1O
Kolotkov, Gennady A., 66, 6M
Koltovskoi, I. I., 60, 6W
Panchenko, Mikhail V., 2Z, 30, 34, 3E, 3S
Panchenko, Yury N., 54
Parygina, Irina A., 4F, 70
Pavlinski, Alexey V., 53, 76
Pavlina, A. A., 7C
Penenka, Olexey, 6F, 6L
Penenka, Vladimyr V., 5A, 6D
Penin, Sergei T., 66, 6M
Penner, Ioganes E., 3Y, 4D, 4I, 59
Penzin, M. S., 1E
Perezhogin, Andrey S., 5R
Permyakov, M. S., 5M
Petrov, A. V., 2K, 2M
Petrov, D. V., 23, 2D, 4E
Petrova, T. M., 0L, 0M, 0N
Pikalov, M. V., 2G, 2J
Pkhalagov, Yurii A., 3S, 42
Pobachenko, S. V., 73, 75
Poddubny, Vasily A., 3F
Podlesnyih, A. A., 2N
Pogutsa, Cheslav E., 2F, 2O
Pol'kin, Vas. V., 3E
Pol'kin, Viktor V., 2Z, 3E, 3F, 3G
Ponomarchuk, S. N., 1E
Ponomarev, Yu. N., 0M, 0N
Postnikova, P. V., 35
Postnova, I. V., 2N
Postylyakov, Oleg V., 13, 3A, 3B, 3C
Potalova, E. Yu., 5M
Prakhov, A. N., 34
Pravdin, V. I., 53
Prigarin, Sergei M., 1M, 1N, 2S
Prilukhko, I. I., 1G
Prinventsetsev, A. OD
Prokhorov, Igor V., 0Y, 0Z, 18, 2C
Proshchenko, D. Yu., 2N
Provotorov, D. S., 25, 6U, 6V
Pryahina, S., 31
Ptashnik, I. V., 0K
Puchkin, Aleksey V., 54
Pustovalov, Konstantin N., 4B, 69
Pyanova, Elza A., 6D
Radionov, Vladimir F., 34, 3G
Raputa, V. F., 5T
Rasskazchikova, Tatyana M., 3Y, 49
Razenkov, I. A., 1D, 1F, 11, 4M
Razmorov, A. A., 0I
Reyna, V. V., 31, 3J, 3K
Rodimova, Olga B., 06, 09, 0C, 0D
Roldugin, Alexey V., 5C
Roldugin, Valentin C., 5C
Romanov, I. V., 2G
Romanovskii, O. A., 58, 59
Rostov, Andrei P., 12, 4K, 4Z
Rubeva, T. V., 5B
Ruskova, Tatiana, 02, 5Q
Rybnov, Y. S., 6U
Rytkhikov, D. S., 16
Ryzhakova, Nadezhda, 6O
Sadovnikov, S. A., 58, 59
Sakerin, Sergey M., 3D, 3F, 3G
Samoilov, L. V., 1L
Samoilova, Svetlana V., 3Y, 4I, 59
Samokhina, Nataliya P., 4F
Samokhvalov, Ignaty V., 27, 29, 3N, 4B, 4X, 51
Saninov, D. V., 5J
Sato, Kaori, 33, 3X
Savinykh, Vladimir V., 5P
Sazanovich, V. M., 3T
Sedinkin, D. O., 4E
Selin, A. A., 1K
Semenov, V. A., 7A
Seninov, Victor A., 2H
Seryukov, V., 0H
Seredkin, Ilia N., 5R
Sergeeva, Natalia, 6O
Shakhova, Tatyana S., 4F, 70
Sharmaneaeva, L. G., 0R, 20, 56, 6Y
Shang, Zhen, 2T
Shapovalov, A. V., 0A, 0B
Sharipov, O. V., 6H
Shatokhina, Anastasiya O., 27, 29
Scheglova, A. S., 7D
Scheklinkov, A. N., 46
Schepinov, Yu. A., 2N
Shefer, Nadezhda A., 4Z
Shefer, O. V., 2X
Shelekhov, Alexander P., 76
Shelekhov, Evgeniya A., 76, 7A
Sherstnev, V. S., 0B, 0G
Sherstneva, A. I., 0B, 0G
Sherstobitov, M. V., 3T
Shevtsov, Boris M., 3I, 5J, 5M, 5R
Shishkov, A. Yu., 1K, 1P, 1S
Shirokov, I. A., 1G
Shishko, Victor A., 3P
Shitov, A. V., 5W
Shmargunov, V. P., 30, 38
Shmirko, K. A., 4V, 4W
Shybanov, E. B., 2A, 2Y
Sidorova, O. R., 34
Simakhin, V. A., 56
Simonenko, Denis V., 49
Simonova, A. A., 0K
Silenov, S. A., 6R
Sivakov', V. P., 5H
Sklyadneva, Tatyana K., 3R
Skornyakov, Valery Yu., 5P
Skorokhod, Nikolai N., 1T
Slabakova, V., 31
Smichko, Igor N., 36, 37, 39, 3Y
Smirnov, Alexander, 3G
Smirnov, Sergey S., 3N
Smirnova, L. V., 47
Solodchuk, O. V., 73
Soldatchuk, A. A., 5G
Solodov, A. A., 0L, 0M, 0N
Solodov, A. M., 0L, 0M, 0N
Conference Committee

Conference Chairs

Gelii A. Zherebtsov, Institute of Solar-Terrestrial Physics
(Russian Federation)
Gennadii G. Matvienko, V.E. Zuev Institute of Atmospheric Optics
(Russian Federation)

Organizing Committee:

Oleg A. Romanovskii, V.E. Zuev Institute of Atmospheric Optics
(Russian Federation)
Semyon V. Yakovlev, V.E. Zuev Institute of Atmospheric Optics
(Russian Federation)

Program Committee

E. I. Akopov, SPIE Russian Chapter (Russian Federation)
L. C. Andrews, University of Central Florida (United States)
A. Ansmann, Leibniz-Institute for Tropospheric Research (Germany)
K. Asai, Tohoku Institute of Technology (Japan)
V. A. Banakh, V.E. Zuev Institute of Atmospheric Optics
(Russian Federation)
A. Barbe, Université de Reims Champagne-Ardenne (France)
B. D. Belan, V.E. Zuev Institute of Atmospheric Optics
(Russian Federation)
V. V. Belov, V.E. Zuev Institute of Atmospheric Optics
(Russian Federation)
L. R. Bissonnette, Defence Research and Development Canada
(Canada)
P. Bruscaglioni, Università degli Studi di Firenze
(Italy)
Bruce Dean, NASA Goddard Space Flight Center (United States)
G. S. Golitsyn, Institute of Atmospheric Physics
(Russian Federation)
G. I. Gorchakov, Institute of Atmospheric Physics
(Russian Federation)
G. Inoue, National Institute for Environmental Studies (Japan)
A. P. Ivanov, B. J. Stepanov Institute of Physics NAS Belarus (Belarus)
V. P. Kandidov, Moscow State University (Russian Federation)
B. A. Kargin, Institute of Computational Mathematics and
Mathematical Geophysics (Russian Federation)
A. Kohnle, FGAN-FOM (Germany)
P. G. Kovadlo, Institute of Solar-Terrestrial Physics
(Russian Federation)
V.A. Kovalenko, Institute of Solar-Terrestrial Physics (Russian Federation)
V. E. Kunitsyn, Moscow State University (Russian Federation)
V. I. Kurkin, Institute of Solar-Terrestrial Physics (Russian Federation)
V. P. Lukin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
G. G. Matvienko, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
U. G. Oppel, Ludwig-Maximilians-Universität München (Germany)
M. V. Panchenko, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. V. Penenko, Institute of Computational Mathematics and Mathematical Geophysics SB RAS (Russian Federation)
Y. N. Ponomarev, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. P. Potekhin, Institute of Solar-Terrestrial Physics (Russian Federation)
I. V. Ptashnik, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. Rahm, DLR Institut für Physik der Atmosphäre (Germany)
J. C. Ricklin, Defense Advanced Research Projects Agency (United States)
M. C. Roggemann, Michigan Technological University (United States)
I. V. Samokhvalov, National Research Tomsk State University (Russian Federation)
U. N. Singh, NASA Langley Research Center (United States)
L. N. Sinitsa, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
O. K. Steinvall, Swedish Defence Research Agency (Sweden)
G. F. Tulinov, Institute of Applied Geophysics (Russian Federation)
M. A. Vorontsov, University of Maryland (United States)
Gengchen Wang, Institute of Atmospheric Physics (China)
A. A. Zemlyanov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)

Session Chairs

1 Molecular Spectroscopy and Atmospheric Radiative Processes

Yu. N. Ponomarev, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
L. N. Sinitsa, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
T. M. Petrova, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
I. V. Ptashnik, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
2 Optical Radiation Propagation in the Atmosphere and Ocean

V. P. Budak, National Research University "MPEI" (Russian Federation)
V. P. Belov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. P. Lukin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. A. Zemlyanov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. A. Banakh, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. M. Kabanov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)

3 Optical Investigation of Atmosphere and Ocean

G. G. Matvienko, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
I. V. Samokhvalov, National Research Tomsk State University (Russian Federation)
V. N. Marichev, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. A. Tikhomirov, Institute of Monitoring of Climatic and Ecological Systems (Russian Federation)
O.A. Romanovskii, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)

4 Atmospheric Physics and Climate

B. D. Belan, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. A. Kovalenko, Institute of Solar-Terrestrial Physics (Russian Federation)
V. V. Penenko, Institute of Computational Mathematics and Mathematical Geophysics (Russian Federation)
S. A. Kolesnik, National Research Tomsk State University (Russian Federation)
A. V. Soloviev, National Research Tomsk State University (Russian Federation)
V. V. Zavoruev, Institute of computational modeling (Russian Federation)
Introduction

In accordance with the schedule of meeting and conferences approved by the Presidium of the Siberian Branch of the Russian Academy of Sciences (SB RAS) for 2016, the V.E. Zuev Institute of Atmospheric Optics SB RAS and Institute of Solar-Terrestrial Physics SB RAS organized the twenty-second International Symposium titled, "Atmospheric and Ocean Optics: Atmospheric Physics" in Tomsk, Russian Federation, 30 June–3 July 2016.

We thank our sponsors for their contribution to the success of the symposium: Siberian Branch of the Russian Academy of Sciences and the Russian Foundation for Basic Research.

English and Russian were the working languages of the symposium. All poster presentations were in English and oral presentations were made in English and Russian (using synchronous translation via personal audio-equipment).

We conducted four conferences titled:

A. Molecular Spectroscopy and Atmospheric Radiative Processes
B. Optical Radiation Propagation in the Atmosphere and Ocean
C. Optical Investigation of Atmosphere and Ocean
D. Atmospheric Physics and Climate

The main topics of the Twenty-second International Symposium on Atmospheric and Ocean Optic: Atmospheric Physics included:

- Molecular spectroscopy of atmospheric gases
- Absorption of radiation in atmosphere and ocean
- Radiative regime and climate problems
- Models and data bases for atmospheric optics and physics
- Wave propagation in random inhomogeneous media
- Adaptive optics
- Nonlinear effects at radiation propagation in atmosphere
- Multiple scattering in optical remote sensing
- Image transfer and processing
- Optical and microphysical properties of atmospheric aerosol and suspension in water media
- Transport and transformation of aerosol and gas components in the atmosphere
- Laser and acoustic sounding of atmosphere and ocean
- Diagnostics of state and functioning of plants bio systems
- Structure and dynamics of the lower and middle atmosphere
- Dynamics of the atmosphere and climate of the Asian region
• Physical processes and phenomena in the atmosphere
• Optic techniques for probing the atmosphere

History: A symposium on Atmospheric and Ocean Optics has been held annually since 1994 by the Institute of Atmospheric Optics SB RAS. From 1971 to 2015 the IAO SB RAS organized more than 60 conferences on different scientific topics. The current symposium is the only one in Russia where fundamental problems of propagation in inhomogeneous media and the scattering and absorption radiation are considered. Very few conferences in the world have such a broad spectrum of interest. It is very attractive for participants from many of the 16 countries represented that the official languages of the symposium are Russian and English.

In the fields listed here, the Siberian scientific schools are leaders in our country and well known in the world. This fact can be attributed to the interest in the symposium from the scientists of Russian Federation and other countries of the region.

Present: The Twenty-second International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics was successfully held in Tomsk, Russia, 30 June–3 July 2016.

The program of the symposium included 8 invited and plenary papers, 187 oral presentations, and more than 219 poster presentations during four poster sessions.

Gennadii G. Matvienko
Oleg A. Romanovskii