Front Matter: Volume 10045
Ophthalmic Technologies XXVII

Fabrice Manns
Per G. Söderberg
Arthur Ho
Editors

28–29 January 2017
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
Brien Holden Vision Institute

Published by
SPIE

Volume 10045
Contents

v Authors
vii Conference Committee
xi Introduction
xiii 17th Pascal Rol Award for Excellence in Ophthalmic Technologies
xv The Ophthalmic Technologies Foundation Award

OCULAR ELASTOGRAPHY

10045 02 Assessing corneal viscoelasticity after crosslinking at different IOP by noncontact OCE and a modified Lamb wave model [10045-1]

10045 03 Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by optical coherence elastography [10045-2]

10045 04 Assessing the mechanical anisotropy and hysteresis while cycling IOP of porcine eyes before and after CXL by noncontact optical coherence elastography [10045-3]

OPHTHALMIC IMAGING: SMALL ANIMAL MODELS

10045 0J Automated feature extraction for retinal vascular biometry in zebrafish using OCT angiography [10045-17]

OPHTHALMIC IMAGING: STRUCTURE AND FUNCTION

10045 0L Characterization of the lamellar rearrangement induced by cross-linking treatment in keratoconic corneal samples imaged by SHG microscopy [10045-19]

10045 0O Evaluation of intraretinal migration of retinal pigment epithelial cells with Jones matrix optical coherence tomography [10045-22]

10045 0P Impact of anatomical parameters on optical coherence tomography retinal nerve fiber layer thickness abnormality patterns [10045-23]

10045 0R Further analysis of clinical feasibility of OCT-based glaucoma diagnosis with Pigment epithelium central limit- inner limit of the retina Minimal Distance (PIMD) [10045-25]

OCULAR ANGIOGRAPHY AND BLOOD FLOW

10045 0U Motion-corrected en face optical coherence tomography angiography imaging based on the modified Lissajous scanning pattern [10045-27]
10045 0V Wide field OCT angiography by using swept source OCT in living human eye [10045-28]

10045 10 Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system [10045-33]

OPHTHALMIC IMAGING: ADAPTIVE OPTICS

10045 15 Characterizing motility dynamics in human RPE cells [10045-38]

10045 16 Investigation of retinal microstructure in healthy eyes and dry age-related macular degeneration using a combined AO-OCT-SLO system [10045-39]

10045 17 Tracking dynamics of photoreceptor disc shedding with adaptive optics-optical coherence tomography (Pascal Rol Award) [10045-40]

OPHTHALMIC IMAGING: TECHNOLOGY

10045 18 Master/slave based optical coherence tomography for in-vivo, real-time, long axial imaging range of the anterior segment [10045-41]

10045 1D Modular multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography scan-head for surgical microscope-integrated and slit-lamp imaging [10045-46]

POSTER SESSION

10045 1M Combining retinal nerve fiber layer thickness with individual retinal blood vessel locations allows modeling of central vision loss in glaucoma [10045-55]

10045 1R High-refractive index polyacrylates based on quinolinone-structures for intraocular lenses [10045-60]

10045 1S A hyperspectral imaging system for the evaluation of the human iris spectral reflectance [10045-61]

10045 1U Probing superstructure of chicken corneal stroma by Fourier transform second harmonic generation microscopy [10045-63]

10045 1W The relationship between 3D morphology of optic disc and spatial patterns of visual field loss in glaucoma [10045-66]

10045 1X Wide-field fundus imaging with trans-palpebral illumination [10045-67]

10045 22 Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses [10045-72]

10045 24 Noncontact optical coherence elastography of the posterior porcine sclera in situ as a function of IOP [10045-74]

10045 25 Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography [10045-75]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aglyamov, Salavat R., 02, 03, 04, 24
Anand-Apte, Bela, 25
Baniasadi, Neda, 0P, 1M, 1W
Bozic, Ivan, 0J, 25
Bradu, Adrian, 18
Cao, Dingcai, 22
Cebulla, Colleen M., 16
Chan, R. V. Paul, 1X
Chen, Chieh-Li, 0V
Chen, Chien-L., 0V
Chen, Yang-Fang, 0Z, 1M, 24
Chen, Yiwei, 0U
Choi, Stacey S., 16
Cicchi, R., 0L
Dams, Christian, 1R
Desai, Vineet, 0J, 25
Di Cecilia, Luca, 1S
Doble, Nathan, 16
Dong, Chen-Yuan, 1U
El-Haddad, Mohamed T., 1D
Elsner, A. E., 0O
Erol, Muhammet Kazim, 1X
Gorczyńska, I., 10
Gotó, H., 00
Hampp, Norbert, 1R
Han, Zhanglei, 02, 03, 04, 24
Helms, Ernest, Simon, 1R
Hong, Young-Joo, 00, 0U
Iwasaki, T., 0O
Jin, Qingying, 0P, 1M
Jonnal, R., 10
Joos, Karen M., 1D
Kurokawa, Kazuhiro, 15, 17
Lafon, Ericka, 24
Larin, Kirill V., 02, 03, 04, 24
Lee, Sheng-Lin, 1U
Li, Jianwei D., 1D
Li, Jiasong, 02, 04
Liu, Chih-Hao, 02, 03, 04
Liu, Zhuolin, 15, 17
Lu, Yiming, 22
Mahd, Muheed, 0P
Makita, Shuichi, 0O, 0U
Malmberg, Filip, 0R
Malone, Joseph D., 1D
Marazzi, Francesco, 1S
Menabuoni, L., 0L
Poddar, R., 10
Podoleanu, Adrian, 18
Pollock, Lana M., 25
Raghunathan, Raksha, 02, 04
Rao, Gopikrishna M., 0J, 25
Ratto, F., 0L
Rivet, Sylvain, 18
Rossi, F., 0L
Sandberg-Melin, Camilla, 0R
Séderberg, Per G., 0R
Son, Taeyoon, 22
Spitz, Kathleen, 25
Sugiyama, S., 0O
Tao, Yuankai K., 0J, 1D, 25
Tatini, F., 0L
Thapa, Damber, 1X
Toslak, Devrim, 1X
Twa, Michael D., 02, 04
Vantipalli, Srilatha, 02
Wang, Benquan, 22
Wang, Hui, 0P, 1M, 1W
Wang, Mengyu, 0P, 1M, 1W
Wang, Ruikang K., 0V
Wells-Gray, Elaine M., 16
Werner, J. S., 10
Wu, Chen, 02, 03, 24
Yao, Xincheng, 1X, 22
Yasuno, Yoshiaki, 0O, 0U
Zawadzki, R. J., 10
Zhang, Furu, 15, 17
Zhang, Qinqin, 0V
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chair:

Brian Jet-Fei Wong, Beckman Laser Institute and Medical Clinic (United States)

Conference Chairs

Fabrice Manns, University of Miami (United States)
Per G. Söderberg, Uppsala University (Sweden)
Arthur Ho, Brien Holden Vision Institute (Australia)

Conference Program Committee

Rafat R. Ansari, NASA Glenn Research Center (United States)
Michael Belkin, Tel Aviv University (Israel)
Kostadinka Bizheva, University of Waterloo (Canada)
David Borja, Alcon Laboratories, Inc. (United States)
Ralf Brinkmann, Universität zu Lübeck (Germany)
Wolfgang Drexler, Medizinische Universität Wien (Austria)
Sina Farsiu, Duke University (United States)
Daniel X. Hammer, U.S. Food and Drug Administration (United States)
Karen M. Joos, Vanderbilt University (United States)
Kirill V. Larin, University of Houston (United States)
Ezra Maguen, American Eye Institute (United States)
Donald T. Miller, Indiana University (United States)
Derek Nankivil, Johnson & Johnson Vision Care, Inc. (United States)
Daniel V. Palanker, Stanford University (United States)
Jean-Marie Parel, Bascom Palmer Eye Institute (United States)
Roberto Pini, Istituto di Fisica Applicata Nello Carrara (Italy)
Ygal Rotenstreich, The Chaim Sheba Medical Center, Tel Hashomer (Israel)
Luigi Rovati, Università degli Studi di Modena e Reggio Emilia (Italy)
Georg Schuele, OptiMedica Corporation (United States)
Jerry Sebag, VMR Institute (United States)
Peter Soliz, VisionQuest Biomedical, LLC (United States)
Valery V. Tuchin, N.G. Chernyshevsky Saratov National Research State University (Russian Federation) and National Research Tomsk State University (Russian Federation) and Institute of Precision Mechanics and Control RAS (Russian Federation)
Robert J. Zawadzki, University of California, Davis (United States)

Session Chairs

1. Ocular Elastography
 Per G. Söderberg, Uppsala University (Sweden)
 Kostadinka Bizheva, University of Waterloo (Canada)

2. Ophthalmic Light and Laser-Tissue Interaction
 Georg Schuele, Abbott Medical Optics (United States)
 Ralf Brinkmann, Medizinisches Laserzentrum Lübeck GmbH (Germany)

3. Pascal Rol Lecture
 Per G. Söderberg, Uppsala University (Sweden)

4. Ophthalmic Imaging: Small Animal Models
 Robert J. Zawadzki, University of California, Davis (United States)
 Kostadinka Bizheva, University of Waterloo (Canada)

5. Ophthalmic Imaging: Structure and Function
 Karen M. Joos M.D., Vanderbilt University (United States)
 Donald T. Miller, Indiana University (United States)

6. Ocular Angiography and Blood Flow
 Luigi Rovati, Università degli Studi di Modena e Reggio Emilia (Italy)
 Robert J. Zawadzki, University of California, Davis (United States)

7. Ophthalmic Imaging: Adaptive Optics
 Daniel X. Hammer, U.S. Food and Drug Administration (United States)
 Daniel V. Palanker, Stanford University (United States)

8. Ophthalmic Imaging: Technology
 Derek Nankivil, Johnson & Johnson Vision Care, Inc. (United States)
 Marco Ruggeri, Bascom Palmer Eye Institute (United States)

9. Ocular Biometry, Vision Correction and Vision Assessment
 Ezra Maguen M.D., American Eye Institute (United States)
 Georg Schuele, Abbott Medical Optics (United States)
Pascal Rol Award

Arthur Ho, Brien Holden Vision Institute (Australia)
Karen M. Joos M.D., Vanderbilt University (United States)
Daniel V. Palanker, Stanford University (United States)
Introduction

The papers contained in this volume were presented at the twenty-seventh conference on Ophthalmic Technologies, held from January 28 to 29, 2017, at the Moscone Center in San Francisco, California as a part of the SPIE Photonics West BiOS Meeting.

A total of 56 papers and 16 posters were presented by scientists, clinicians, and engineers from academia and industry representing 20 countries spanning 4 continents. Topics included new approaches using vortex beams for laser corneal surgery, characterization of corneal and lens biomechanics using optical coherence elastography, high resolution cellular-level imaging of the cornea and retina using optical coherence tomography and adaptive optics, and retinal and choroidal vasculature imaging.

The conference hosted its eleventh presentation on the topic of the unmet needs and impact of technology in a clinical area. Prof. William Culbertson, from Bascom Palmer Eye Institute at the University of Miami, gave a captivating lecture describing the development and future needs of femtosecond laser cataract surgery.

The seventeenth Pascal Rol Award was presented to Dr. Furu Zhang and his colleagues from Indiana University for their outstanding paper on “Tracking dynamics of photoreceptor disc shedding with adaptive optics-optical coherence tomography” (10045-40). Established in memory of Dr. Pascal O. Rol, former chair and co-founder of the Ophthalmic Technologies conference, the award is in recognition of the best manuscript and presentation. The 2017 finalists of the award, selected by the entire program committee among the 74 abstract submissions, included Iwona M. Gorczynska (10045-33), Francesco LaRocca (10045-45), and Zhuolin Liu (10045-38).

We are very grateful to the Brien Holden Vision Institute in Sydney, Australia, for sponsoring the 2017 Pascal Rol award and keynote lecture through the Pascal Rol Foundation.

We thank the Program Committee members, session chairs, speakers and participants, as well as the SPIE staff for their support and dedication in making this conference a success.

We extend an invitation for the Ophthalmic Technologies XXVIII conference, which is scheduled for Saturday January 27 and Sunday January 28, 2018 in San Francisco, CA.

Fabrice Manns
Per G. Söderberg
Arthur Ho
Seventeenth Pascal Rol Award for Excellence in Ophthalmic Technologies
Supported by the Brien Holden Vision Institute through the Pascal Rol Foundation

Presented on Sunday January 29, 2017 to

Dr. Furu Zhang

for his excellent paper on

"Tracking dynamics of photoreceptor disc shedding with adaptive optics-optical coherence tomography"

Arthur Ho (left) and Karen Joos (right) present the 2017 Pascal Rol Award to Furu Zhang (center).

Past awardees

2016 Zhuolin Liu Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography
2015 Francesco de la Rocca Ultra-compact switchable SLO/OCT handheld probe design
2014 Marco Ruggieri Biometry of the ciliary muscle during dynamic accommodation assessed with OCT
2013 Yossi Mandel In-vivo performance of photovoltaic subretinal prosthesis
2012 Clemens Alt In vivo quantification of microglia dynamics with an SLO in a mouse model of focal laser injury
2011 James Loudin Photovoltaic Retinal Prosthesis
2010 Daniel Hammer Multimodal adaptive optics for depth enhanced high-resolution ophthalmic imaging
2009 Kazuhiro Kurokawa 1 μm wavelength adaptive optics scanning laser ophthalmoscope
2008 Boris Povazay Minimum distance mapping using volumetric OCT: A novel indicator for early glaucoma diagnosis
2007 Yoshiaki Yasuno Clinical examinations of anterior eye segments by three-dimensional swept-source optical coherence tomography
2006 Enrique Fernandez Adaptive optics using a liquid crystal spatial light modulator for ultrahigh-resolution optical coherence tomography
2005 Karsten König Cornea surgery with nanosecond femtosecond laser pulses
2004 Daniel Palanker Attracting retinal cells to electrodes for high-resolution stimulation
2003 Igor Ermakov Non-invasive optical techniques for the measurement of macular pigments
2002 Georg Schuele Non-invasive temperature measurements during laser irradiation of the retina with optoacoustic techniques
2001 Matthew Smith Minimizing the influence of fundus pigmentation on retinal vessel oximetry measurements
Clinical implementation of fs cataract surgery, needs for further technology?

The Pascal Rol Lecture on Ophthalmic Technologies is presented by a leading researcher in ophthalmology with a strong interest and pioneering research contributions to the field of ophthalmic technologies. This invited lecture is intended to trigger further development of ophthalmic technologies by stimulating discussions between basic scientists, engineers, and clinicians.

The 2017 lecture was supported by the Brien Holden Vision Institute through the Pascal Rol Foundation (www.pascalrolfoundation.org)