Front Matter: Volume 10085
Contents

vii Authors
ix Conference Committee

SESSION 1 LASER DIODE PACKAGING I: JOINT SESSION WITH CONFERENCES 10085 AND 10086

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 02</td>
<td>Assessment of factors regulating the thermal lens profile and lateral brightness in high power diode lasers (Invited Paper)</td>
<td>[10085-1]</td>
<td></td>
</tr>
<tr>
<td>10085 04</td>
<td>Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology</td>
<td>[10085-3]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 2 LASER DIODE PACKAGING II

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 05</td>
<td>Narrow-line diode laser packaging and integration in the NIR and MIR spectral range (Invited Paper)</td>
<td>[10085-4]</td>
<td></td>
</tr>
<tr>
<td>10085 06</td>
<td>Compact diode laser module at 1116 nm with an integrated optical isolation and a PM-SMF output</td>
<td>[10085-5]</td>
<td></td>
</tr>
<tr>
<td>10085 08</td>
<td>Artificial neural network assisted laser chip collimator assembly and impact on multi-emitter module beam parameter product</td>
<td>[10085-7]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 3 LASER DIODE PACKAGING III

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 09</td>
<td>Reliable QCW diode laser arrays for operation with high duty cycles</td>
<td>[10085-8]</td>
<td></td>
</tr>
<tr>
<td>10085 0A</td>
<td>Thermal characteristics of compact conduction-cooled high power diode laser array packages</td>
<td>[10085-9]</td>
<td></td>
</tr>
<tr>
<td>10085 0B</td>
<td>Collimation optics for high power blue laser diodes</td>
<td>[10085-10]</td>
<td></td>
</tr>
<tr>
<td>10085 0C</td>
<td>Optoelectronic packaging of single photon avalanche diodes</td>
<td>[10085-2]</td>
<td></td>
</tr>
<tr>
<td>10085 0D</td>
<td>The smile effect reduction of diode laser bar by bare bar curve control</td>
<td>[10085-12]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 4 LASER DIODE PACKAGING IV

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 0F</td>
<td>Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space (Invited Paper)</td>
<td>[10085-14]</td>
<td></td>
</tr>
<tr>
<td>10085 0G</td>
<td>Optical components for tailoring beam properties of multi-kW diode lasers</td>
<td>[10085-15]</td>
<td></td>
</tr>
<tr>
<td>10085 0I</td>
<td>Optimization of microchannel cooler of high power diode laser array package</td>
<td>[10085-17]</td>
<td></td>
</tr>
<tr>
<td>SESSION 5</td>
<td>COMPONENTS AND PACKAGING FOR HIGH POWER/ENERGY LASERS I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10085 0J</td>
<td>Application specific beam profiles: new surface and thin-film refinement processes using beam shaping technologies (Invited Paper) [10085-18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10085 0K</td>
<td>Optics for multimode lasers with elongated depth of field [10085-19]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>COMPONENTS AND PACKAGING FOR HIGH POWER/ENERGY LASERS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 0M</td>
<td>1.5kW linear polarized on PM fiber and 2kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier [10085-40]</td>
</tr>
<tr>
<td>10085 0N</td>
<td>SRS modeling in high power CW fiber lasers for component optimization [10085-22]</td>
</tr>
<tr>
<td>10085 0P</td>
<td>Complex holographic elements in photo-thermo-refractive glass for the visible spectral region [10085-24]</td>
</tr>
<tr>
<td>10085 0Q</td>
<td>High power laser source for atom cooling based on reliable telecoms technology with all fibre frequency stabilisation [10085-25]</td>
</tr>
<tr>
<td>10085 0R</td>
<td>The SMAT fiber laser for industrial applications [10085-26]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>COMPONENTS AND PACKAGING FOR PULSED HIGH POWER/ENERGY LASERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 0S</td>
<td>Environmentally stable seed source for high power ultrafast laser (Invited Paper) [10085-27]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 8</th>
<th>COMPONENTS AND PACKAGING FOR LASER BEAM ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 0W</td>
<td>Design and evaluation of a diffractive beam splitter for dual-wavelength laser processing [10085-31]</td>
</tr>
<tr>
<td>10085 0Y</td>
<td>Active alignment of DOE based structured light application in consumer electronics [10085-33]</td>
</tr>
<tr>
<td>10085 0Z</td>
<td>Simultaneous position and angle control for outgoing laser beam design using two galvanometer mirrors [10085-34]</td>
</tr>
<tr>
<td>10085 10</td>
<td>Beam shaping with numerically optimized photonic crystals [10085-35]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10085 12</td>
</tr>
<tr>
<td>10085 13</td>
</tr>
<tr>
<td>10085 14</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Amako, J., 0W
Ashok, Nandam, 14
Assmann, Christian, 05
Bawamia, A., 0F
Bayer, Andreas, 0G
Biesenbach, Jens, 09, 0G
Bodem, Christian, 0G
Bordenyuk, Andrey, 0S
Braglia, Andrea, 08
Brecher, C., 0Y
Brochu, G., 0N
Cheng, Jian, 0D
Crump, P., 02
De La Cruz, Joel, 0M
Demmer, D., 0C
Ding, Jianwu, 0R
Dionne, R., 0N
Divliansky, Ivan, 0P
Dürsch, Sascha, 0G
Elizarov, Valentin, 12
Farries, Mark, 0Q
Faßbender, Wilhelm, 09, 0G
Faucher, M., 0N
Forrer, H., 0B
Forrer, M., 0B
Gadonas, Roaldas, 10
Gailevičius, Darius, 10
Gapontsev, Valentin, 0M, 0S
Giudice, A., 0C
Glebov, Leonid B., 0P
Grishkanich, Aleksandr, 12
Han, Seungryong, 14
Haslett, T., 0C
Hauschild, Dirk, 0J
Hayakawa, Tomohiko, 02
Hettler, N., 0Y
Hofmann, Julian, 06
Huber, M., 0B
Hubrich, Ralf, 0G
Iakovlev, Alexey, 12
Ishikawa, Masatoshi, 0Z
Jedrzejczyk, Daniel, 06
Jia, Guannan, 0D
Jimenez, Alvaro, 05
Kascheev, Sergey V., 12
Kenke, R., 02
Kindervater, Tobias, 0G
Kissel, Heiko, 09
Könning, Tobias, 09, 0G

Köhler, Bernd, 0G
Kompan, Fedor, 0P
Krüger, M., 0F
Kürbis, Ch., 0F
Küster, Matthias, 0G
Laskin, Alexander, 0K
Laskin, Vadim, 0K
Lee, Yeung Lok, 14
Legg, Thomas, 0Q
Liang, Xuejie, 04, 0I
Li, Hui, 04
Li, Jinghui, 0R
Li, Xingsheng, 04, 0A, 0I
Li, Yalong, 04
Lotz, Jens, 09
Lu, Xiaoying, 0D
Mahnkopf, S., 0C
Mak, Andrey, 12
Milde, Tobias, 05
Mörn, M., 0N
Moser, H., 0B
Müller, T., 0Y
Nakano, Hiroshi, 13
Nie, Zhiquiang, 0I
O’Gorman, James, 05
Ostrun, Aleksei, 0K
Paschke,Katrin, 06
Patterson, Steve, 09
Peckus, Martynas, 10
Perrone, Guido, 0B
Peters, A., 0F
Plappert, Nora, 0G
Platonov, Nikolai, 0M
Purlys, Vytautas, 10
Rieprich, J., 02
Rossi, Giammarco, 08
Sacher, Joachim R., 05
Samartsev, Igor, 0S
Sauer, S., 0Y
Schliemangk, M., 0F
Shin, Woojin, 14
Simmerle, G., 0C
Smirnov, Leonid, 12
Smirnov, Vadim, 0P
Smol, R., 0F
Staacke, Niklas, 05
Staliunias, Kestutis, 10
Tanaka, Miyu, 13
Tei, Masaya, 13
Tomm, J., 02
Tränkle, G., 0F
Trépanier, F., 0N
Uno, Kazuyuki, 13
Villeneuve, A., 0N
Wang, Jingwei, 04, 0A, 0I
Wang, Zhiyong, 0D
Wei, Xi, 0R
Werner, Nils, 06
Wicht, A., 0F
Winterfeldt, M., 02
Wolf, Paul, 0G
Wu, Dihai, 04, 0I
Wuest, P., 0B
Xu, Jun, 0R
Yagodkin, Roman, 0M
Yao, Shun, 0D
Yu, Dongshan, 04
Yu, Hao, 08
Yusim, Alexander, 0M
Zah, Chung-en, 04
Zhang, Pu, 0A, 0I
Zhevlakov, Aleksandr, 12
Zhu, Pengfei, 04
Zhu, Qiwen, 0A
Zontar, D., 0Y
Conference Committee

Symposium Chairs

Reinhart Poprawe, Fraunhofer-Institut für Lasertechnik (Germany)
Koji Sugioka, RIKEN (Japan)

Symposium Co-chairs

Guido Hennig, Daetwyler Graphics AG (Switzerland)
Yongfeng Lu, University of Nebraska-Lincoln (United States)

Program Track Chairs

Kunihiko Washio, Paradigm Laser Research Ltd. (Japan)
John Ballato, Clemson University (United States)

Conference Chairs

Alexei L. Glebov, OptiGrate Corporation (United States)
Paul O. Leisher, Rose-Hulman Institute of Technology (United States)

Conference Program Committee

Igor Anisimov, Air Force Research Laboratory (United States)
Gunnar Böttger, Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (Germany)
Kristian J. Buchwald, Ibsen Photonics A/S (Denmark)
Te-Yuan Chung, National Central University (Taiwan, China)
Joseph L. Dallas, Avo Photonics, Inc. (United States)
Allen M. Earman, AOSense, Inc. (United States)
Martin Forrer, FISBA AG (Switzerland)
Alexander V. Laskin, AdiOptica Optical Systems GmbH (Germany)
Xingsheng Liu, Xi’an Institute of Optics and Precision Mechanics (China)
Jens Meinschien, LIMO Lissotschenko Mikrooptik GmbH (Germany)
Christian V. Poulsen, NKT Photonics Inc. (United States)
Mark A. Stephen, NASA Goddard Space Flight Center (United States)
Takunori Taira, Institute for Molecular Science (Japan)
Torsten Vahrenkamp, ficonTEC Service GmbH (Germany)
Alexander Yusim, IPG Photonics Corporation (United States)
Chungen Zah, Focuslight Technologies, Inc. (China)
Arnaud Zoubir, ALPhANOV (France)
Session Chairs

1. Laser Diode Packaging I: Joint Session with Conferences 10085 and 10086
 Paul O. Leisher, Rose-Hulman Institute of Technology (United States)
 Robert Martinsen, nLIGHT Corporation (United States)

2. Laser Diode Packaging II
 Martin Forrer, FISBA AG (Switzerland)

3. Laser Diode Packaging III
 Chungen Zah, Focuslight Technologies, Inc. (China)

4. Laser Diode Packaging IV
 Joseph L. Dallas, Avo Photonics, Inc. (United States)

5. Components and Packaging for High Power/Energy Lasers I
 Christian V. Poulsen, NKT Photonics Inc. (United States)

6. Components and Packaging for High Power/Energy Lasers II
 Alexander V. Laskin, AdiOptica Optical Systems GmbH (Germany)

7. Components and Packaging for Pulsed High Power/Energy Lasers
 Alexander Yusim, IPG Photonics Corporation (United States)

8. Components and Packaging for Laser Beam Engineering
 Evan Robert Hale, CREOL, University of Central Florida (United States)