14th Conference on Education and Training in Optics and Photonics: ETOP 2017

Xu Liu
Xi-Cheng Zhang
Editors

29–31 May 2017
Hangzhou, China

Sponsored by
ICO—International Commission for Optics
IEEE—The Photonics Society
The Optical Society
SPIE
The Chinese Optical Society (China)

Organized by
CNSCOP—Chinese National Steering Committee of Optics and Photonics (China) • Optics Education Committee of the Chinese Optical Society (China) • Optical Society of Zhejiang Province (China) • Faculty of Information Technology, Zhejiang University (China) • College of Optical Science and Engineering, Zhejiang University (China) • State Key Laboratory for Modern Optical Instrumentation (China)

Published by
SPIE

Volume 10452
Part One of Two Parts
Contents

xxv Introduction

Part One

Curriculum Development in Optics and Photonics Education I

10452 04	Demonstration of theoretical and experimental simulations in fiber optics course [10452-10]
10452 05	Solar cell and photonics outreach for middle school students and teachers [10452-29]
10452 06	The Master’s program in Advanced Optical Technologies: an interdisciplinary, international and individual approach [10452-37]
10452 07	Cathedral outreach: student-led workshops for school curriculum enhancement in non-traditional environments [10452-44]

New Pedagogical Methods, Tools and Models in Optical Education I

10452 08	Near-field diffraction from amplitude diffraction gratings: theory, simulation and results [10452-7]
10452 09	Why do I need to know this? Optics/photonics problem-based learning in the math classroom [10452-9]
10452 0A	Towards the computer visualization of electrodynamics education for undergraduates major in optics [10452-17]
10452 0B	New approaches in teaching laser engineering classes: modeling and building up a laser [10452-21]

Education and Training for Multidisciplinary Education I

10452 0D	Optical projects in the Clinic program at Harvey Mudd College [10452-39]
10452 0E	Re-energizing enquiry among our young professionals [10452-43]
10452 0F	Hierarchy curriculum for practical skills training in optics and photonics [10452-126]
LABORATORIES FOR OPTICS EDUCATION I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0G</td>
<td>Using polarization maintaining fibers for the purpose of a polarization multiplex</td>
<td>10452-19</td>
</tr>
</tbody>
</table>

INVITED SESSION I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0J</td>
<td>Solar powered rotorcraft: a multidisciplinary engineering challenge for undergraduate students (Invited Paper)</td>
<td>10452-49</td>
</tr>
<tr>
<td>0L</td>
<td>Active learning in optics for girls (Invited Paper)</td>
<td>10452-237</td>
</tr>
</tbody>
</table>

CURRICULUM DEVELOPMENT IN OPTICS AND PHOTONICS EDUCATION II

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0M</td>
<td>Chinese national optical education small private online course system</td>
<td>10452-115</td>
</tr>
<tr>
<td>0N</td>
<td>Enriching contents of optical courses with cutting-edge knowledge in nanophotonics</td>
<td>10452-142</td>
</tr>
<tr>
<td>0O</td>
<td>The Master level optics laboratory at the Institute of Optics</td>
<td>10452-144</td>
</tr>
<tr>
<td>0P</td>
<td>Teaching practice and effect of the curriculum design and simulation courses under the support of professional optical software</td>
<td>10452-159</td>
</tr>
</tbody>
</table>

NEW PEDAGOGICAL METHODS, TOOLS AND MODELS IN OPTICAL EDUCATION II

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0Q</td>
<td>Discussion and group work design in O2O teaching of applied optics: questions, strategies and extending</td>
<td>10452-30</td>
</tr>
<tr>
<td>0R</td>
<td>Study and practice of flipped classroom in optoelectronic technology curriculum</td>
<td>10452-31</td>
</tr>
<tr>
<td>0S</td>
<td>Modular and extensible lesson on fiber optics for youths</td>
<td>10452-42</td>
</tr>
<tr>
<td>0T</td>
<td>A whole-process progressive training mode to foster optoelectronic students' innovative practical ability</td>
<td>10452-48</td>
</tr>
<tr>
<td>0W</td>
<td>Student-centered and ability training-oriented curriculum reform in teaching Microcontroller Principles and Interface Techniques</td>
<td>10452-79</td>
</tr>
<tr>
<td>0Y</td>
<td>Teaching the concept of convolution and correlation using Fourier transform</td>
<td>10452-92</td>
</tr>
<tr>
<td>0Z</td>
<td>An optoelectric professional's training model based on Unity of Knowing and Doing theory</td>
<td>10452-99</td>
</tr>
<tr>
<td>10</td>
<td>Why not serve an educational buffet for students? Blended learning in optics experimental education</td>
<td>10452-102</td>
</tr>
<tr>
<td>11</td>
<td>The application of micro-lesson in optics teaching</td>
<td>10452-119</td>
</tr>
</tbody>
</table>
Visualization of polarization state and its application in optics classroom teaching [10452-127]

Exploration and practice in-class practice teaching mode [10452-131]

LABORATORIES FOR OPTICS EDUCATION II

Consequences of repeated discovery and benign neglect of non-interaction of waves (NIW) [10452-36]

Teaching stellar interferometry with polymer optical fibers [10452-61]

Optics simulations: a Python workshop [10452-95]

Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes [10452-67]

Photonics in nature: Yellowstone National Park in IR [10452-73]

Demonstration and implications when 50% beam combiners can behave as 0% or 100% reflector/transmitter inside some interferometers [10452-83]

Interactive virtual optical laboratories [10452-93]

Optics education in an optometric setting [10452-104]

Optical engineering: understanding optical system by experiments [10452-109]

The exploration and practice of the integrative and continuous optoelectronic practical teaching system [10452-117]

An improved Michelson interferometer: smoothing out the rough spots for a more effective teaching tool [10452-147]

Optical circulator analysis and optimization: a mini-project for physical optics [10452-148]

Introduction of optical tweezers in advanced physics laboratory [10452-153]

EDUCATION AND TRAINING FOR MULTIDISCIPLINARY EDUCATION II

Light-based science and technologies and human civilization: an optical course for general education [10452-77]

Optoelectronic lessons as an interdisciplinary lecture [10452-111]

Ball game watching theory in the teaching site [10452-118]
Development of multidisciplinary nanotechnology undergraduate education program at the University of Rochester Integrated Nanosystems Center [10452-184]

DIGITAL AND INTERNET TECHNOLOGY FOR OPTICAL EDUCATION

Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics [10452-4]

SiCloud: an online education tool for silicon photonics [10452-41]

Learning in depth with the bespoke rubric-supported online poster presentation [10452-47]

Online course Geometrical Optics for undergraduate students [10452-53]

Optical virtual experimental simulation platform: SeeLight [10452-82]

Interactive teaching and learning with smart phone app in Optoelectronic Instruments course [10452-129]

Experimental teaching and training system based on volume holographic storage [10452-255]

MATLAB-aided teaching and learning in optics and photonics using the methods of computational photonics [10452-256]

The PAD Class: a new paradigm for university classroom teaching [10452-263]

Optical test course teaching practice on WeChat public platform [10452-264]

INTERNATIONAL EXCHANGE AND COOPERATION FOR OPTICAL EDUCATION

Innovative training strategy for higher education: the photonics training platform at University of Bordeaux [10452-40]

Comparison and enlightenment of optical higher education between America and China [10452-50]

Curriculum design and German student exchange for Sino-German Bachelor program majored in optoelectronics engineering [10452-134]

Launching partnership in optics and photonics education between University of Rochester and Moscow Engineering Physics Institute NRNU MEPhi [10452-190]

German-Chinese cooperative Bachelor in engineering physics/optoelectronics [10452-226]

Open innovation at the Abbe School of Photonics [10452-230]
KEYNOTE SESSION I

10452 29 The role of Chinese National Steering Committee of Optics and Photonics (CNSCOP) (Keynote Paper) [10452-121]

INVITED SESSION II

10452 2C Teaching physics and understanding infrared thermal imaging (Invited Paper) [10452-33]
10452 2D Engaging colleagues in active learning pedagogies through mentoring and co-design (Invited Paper) [10452-72]

CURRICULUM DEVELOPMENT IN OPTICS AND PHOTONICS EDUCATION III

10452 2F Photonics education development for electrical engineering students [10452-178]
10452 2H Has optics finally found its rightful place in physics curriculum in universities of Eastern Africa? [10452-186]
10452 2I Quantum optics and nano-optics teaching laboratory for the undergraduate curriculum: teaching quantum mechanics and nano-physics with photon counting instrumentation [10452-189]
10452 2J Curriculum optimization of College of Optical Science and Engineering [10452-193]

NEW PEDAGOGICAL METHODS, TOOLS AND MODELS IN OPTICAL EDUCATION III

10452 2L Teach students Semiconductor Lasers according to their natural ability [10452-180]
10452 2N Flipping the Electromagnetic Theory classroom [10452-182]

LABORATORIES FOR OPTICS EDUCATION III

10452 2R Evolution of National University Students' Optical-Science-Technology competition in China [10452-166]
10452 2S Open source 3D printers: an appropriate technology for building low cost optics labs for the developing communities [10452-187]
10452 2T Cage structure application in photoelectric experiment and teaching [10452-191]
10452 2U A simple student laboratory practice for the study of light scattering by cylindrical bodies [10452-212]
10452 2V Applied Electronics and Optical Laboratory: an optimized practical course for comprehensive training on optics and electronics [10452-218]
TRAINING PROGRAMS FOR SENIOR UNDERGRADUATES

10452 2W Engaging college physics students with photonics research [10452-5]
10452 2Y Cultivation of students’ engineering designing ability based on optoelectronic system course project [10452-128]
10452 2Z Training program developed for senior undergraduates majoring in optical communication [10452-154]
10452 31 Teaching practice and reform of the cultivation of excellent engineer based on the idea of engineering education [10452-216]

CURRICULUM DEVELOPMENT IN OPTICS AND PHOTONICS EDUCATION IV

10452 32 Exploration on teaching reform of theory curriculum for engineering specialties [10452-204]
10452 33 Stereoscopic construction and practice of optoelectronic technology textbook [10452-219]
10452 34 On the structural logic of curriculum system for the optical instrument major [10452-259]
10452 35 Design and practice of a comprehensively functional integrated management information system for major construction [10452-261]

Part Two

NEW PEDAGOGICAL METHODS, TOOLS AND MODELS IN OPTICAL EDUCATION IV

10452 36 New approaches in teaching spectroscopy technique and application classes: history, experiments and frontier lectures [10452-251]
10452 37 Study of research-based teaching mode in the course of Geometric Optics and Optical Instruments [10452-252]
10452 38 Research on the teaching method based on cultivating interest [10452-260]
10452 39 IMI’s teaching design, feedback system and its localization [10452-262]
10452 3A A simple method for processing data with least square method [10452-267]

LABORATORIES FOR OPTICS EDUCATION IV

10452 3B Blue sun reflected from water: optical lessons from observations of nature [10452-250]
10452 3C A demonstration of particle duality of light [10452-254]
To make a further explanation on some questions about optical imaging using a light field camera [10452-265]

Teaching practice of the course of Laser Principle and Application based on PBL mode [10452-266]

An optoelectronic detecting based environment perception experiment for primer students using multiple-layer laser scanner [10452-268]

TEACHING OF PHOTONICS FOR HIGH SCHOOL STUDENTS

Research summer camp in photonics [10452-59]

Teaching basic concepts based on diffraction grating to basic primary diffraction education students [10452-60]

Middle and high school teachers’ implementation reflections of photonics and optics curriculum in a qualitative study [10452-258]

KEYNOTE SESSION II

Bringing optics to Fab Labs in Europe (Keynote Paper) [10452-279]

POSTER SESSION

LCoS-SLM technology based on Digital Electro-optics Platform and using in dynamic optics for application development [10452-3]

Simulation and visualization of fundamental optics phenomenon by LabVIEW [10452-6]

Exploration of offering photoelectric experimental general elective courses for college students of science and technology [10452-11]

Photoelectric professional students in common universities cultivate way to explore under the background of professional certification [10452-16]

Study on diversified cultivation orientation and pattern of optoelectronic major undergraduates [10452-22]

The exploration and practice of integrated innovation teaching in the Applied Optics course [10452-24]

Teaching autonomy: turning the teaching evaluation of the Applied Optics course from impart knowledge to the new intelligent thinking [10452-25]

To promote the engineering innovative abilities of undergraduates by taking projects as the guidance and competitions as the promotion [10452-32]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Remote-controlled optics experiment for supporting senior high school and undergraduate teaching</td>
<td>[10452-38]</td>
</tr>
<tr>
<td>42</td>
<td>Exploration and practice of the cultivation of optoelectronic innovative talents based on the Students Innovation Training Program</td>
<td>[10452-45]</td>
</tr>
<tr>
<td>43</td>
<td>Investigation, study and practice of optoelectronic MOOCs</td>
<td>[10452-46]</td>
</tr>
<tr>
<td>44</td>
<td>Exploration and practice for engineering innovative talents training based on project-driven</td>
<td>[10452-51]</td>
</tr>
<tr>
<td>45</td>
<td>Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform</td>
<td>[10452-52]</td>
</tr>
<tr>
<td>46</td>
<td>The application of network teaching in applied optics teaching</td>
<td>[10452-55]</td>
</tr>
<tr>
<td>47</td>
<td>The optical design of solar spectrograph</td>
<td>[10452-56]</td>
</tr>
<tr>
<td>48</td>
<td>Student project of optical system analysis API-library development</td>
<td>[10452-57]</td>
</tr>
<tr>
<td>49</td>
<td>Adaption of the Michelson Interferometer for a better understanding of the temporal coherence in lasers</td>
<td>[10452-62]</td>
</tr>
<tr>
<td>4A</td>
<td>PBL approach for undergraduate studies in light engineering</td>
<td>[10452-63]</td>
</tr>
<tr>
<td>4B</td>
<td>Experimental instruction in photonics for high school students: approaches to managing problems faced</td>
<td>[10452-66]</td>
</tr>
<tr>
<td>4C</td>
<td>An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges</td>
<td>[10452-68]</td>
</tr>
<tr>
<td>4D</td>
<td>Design and implementation of a modular interactive labyrinth targeted for use in optical education</td>
<td>[10452-76]</td>
</tr>
<tr>
<td>4E</td>
<td>Effect of finite beam size on the spatial and spectral response of a Fabry-Perot interferometer</td>
<td>[10452-78]</td>
</tr>
<tr>
<td>4F</td>
<td>Practical research on the teaching of Optical Design</td>
<td>[10452-81]</td>
</tr>
<tr>
<td>4G</td>
<td>Cognition and thinking on Applied Optics course’s reformation and innovation</td>
<td>[10452-84]</td>
</tr>
<tr>
<td>4H</td>
<td>Demonstration of wave optic in physics education</td>
<td>[10452-88]</td>
</tr>
<tr>
<td>4I</td>
<td>Exploration on the training mode of application-oriented talents majoring in optoelectronic information</td>
<td>[10452-89]</td>
</tr>
<tr>
<td>4J</td>
<td>FDTD method and models in optical education</td>
<td>[10452-94]</td>
</tr>
<tr>
<td>4K</td>
<td>Study on the depolarization of CCl₄ Raman spectrum by the parameter of polarizer and analyzer</td>
<td>[10452-96]</td>
</tr>
</tbody>
</table>
Exploration of multidimensional interactive classroom teaching for CCD principle and application course [10452-98]

Reform of experimental teaching based on quality cultivation [10452-100]

The application and improvement of Fourier transform spectrometer experiment [10452-103]

Active learning in camera calibration through vision measurement application [10452-105]

A modified rotating liquid optics method to measure the gravity acceleration [10452-106]

Study of the undergraduate student's innovation and entrepreneurship training strategy [10452-107]

Curriculum system for experimental teaching in optoelectronic information [10452-110]

Design and practice of a novel experiment teaching systems based on the optoelectric information chain [10452-113]

Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation [10452-114]

Project-oriented teaching model about specialized courses in the information age [10452-116]

Study on the joint training mode of optical engineering master [10452-122]

The practice of problem-based investigative teaching reform in semiconductor physics course [10452-123]

Experimental teaching reforms of optical fiber communication based on general education [10452-124]

Recent progress in holographic display technology [10452-125]

Improvement of the experimental content in Laser Principle and its Application [10452-138]

Pure study and experimental application of laser measurement for students in independent colleges [10452-139]

Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation [10452-140]

Practice and thinking on examination way reform of optoelectronic detection technology course [10452-143]

Effective approach to spectroscopy and spectral analysis techniques using Matlab [10452-146]

MOOC construction and application in professional degree postgraduate education: taking Introduction to Engineering Optics as an example [10452-149]
Exploration on the course construction of ocean optics

Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

Magneto-optical Kerr effect studies with classical electromagnetic theory

Micro- and nano-photonics course in Beijing Institute of Technology

A practice course to cultivate students' comprehensive ability of photoelectricity

Exploration of teaching mode aiming at engineering training

Integrated design course of applied optics focusing on operating and maintaining abilities

Assessment by psychophysical methods for design courses of optical discipline

Exploration of optical classroom teaching by network platform

Mobile internet and technology for optical teaching reform in higher education

Investigation on the learning interest of senior undergraduate students in optoelectronics specialty

Cultivating engineering innovation ability based on optoelectronic experimental platform

The exploration on the reform of production practice for photoelectric specialty

Virtual simulation experiment in the course Laser Principles and Techniques for undergraduates

Digital education reform for improving interaction between students and instructors

Research on pre-scientific concept of light in children's cognitive activity

The research on teaching reformation of photoelectric information science and engineering specialty experiments

Simulation with Python on transverse modes of the symmetric confocal resonator

An experiment teaching method based on the Optisystem simulation platform

The construction of bilingual teaching of optoelectronic technology
10452 60	Reform and practice of optical coherence tomography (OCT) system-driven teaching for optoelectronic instrument principle and design [10452-206]
10452 62	Analysis on an illusion unexpected occurred on a moving statue leaving in fact but approaching by environmental judgment [10452-208]
10452 63	Cultivation mode research of practical application talents for optical engineering major [10452-209]
10452 64	The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect [10452-210]
10452 65	Fiber-optical sensor with intensity compensation model in college teaching of physics experiment [10452-211]
10452 66	Virtual experiment of optical spatial filtering in Matlab environment [10452-213]
10452 6A	Undergraduate education for optical engineering in China under the multidisciplinary education background [10452-220]
10452 6B	Create a good learning environment and motivate active learning enthusiasm [10452-221]
10452 6C	The hierarchical teaching method exploration for curriculum design of photoelectric discipline [10452-222]
10452 6D	Research on teaching reform and practice of applied optics design experiment [10452-223]
10452 6E	Exploring in teaching mode of Optical Fiber Sensing Technology outcomes-based education (OBE) [10452-224]
10452 6F	Innovation ability and innovation spirit in photoelectric comprehensive experiment teaching [10452-225]
10452 6G	Experiment and application of soft x-ray grazing incidence optical scattering phenomena [10452-227]
10452 6H	Research of fiber optical faceplate defects segmentation based on improved watershed algorithm [10452-229]
10452 6I	Workshops on photonics and optoinformatics for school students at ITMO University [10452-231]
10452 6J	Simulation teaching method in Engineering Optics [10452-232]
10452 6K	Innovative research on the group teaching mode based on the LabVIEW virtual environment [10452-234]
10452 6M	Research on Experiment-Guidance-Theory teaching mode in optics course [10452-236]
10452 6N	Study on process evaluation model of students’ learning in practical course [10452-238]
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord [10452-241]

The value of art-oriented pedagogical approaches to the teaching of optics and photonics [10452-243]

The importance of pedagogical content knowledge in curriculum development for illumination engineering [10452-244]

Research on training model of the optoelectronic major university student's innovative ability under the guidance of TRIZ theory [10452-247]

A development optical course based on optical fiber white light interference [10452-253]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abedin, Kazi Monowar, 08
Adam, Aurèle, 3M
Adam, Jost, 1Q
Adams, Rhys, 2D, 2W
Adamson, Per, 00
Aleshchenko, Yury A., 26
Alexander, Alonzo B., 05
Alexeev, Ilya, 0B
Ali, R., 0L
Ammar, A., 18
Andreeva, Natalia, 6I
Aramburu, Ibon, 4E
Arregui, L., 16
Arrue, J., 49
Ashraf, I., 0L
Ayesta, I., 49
Bai, Chunhe, 4T
Bai, Zijun, 31
Bakholdin, Alexey, 1S, 4A
Beliaeva, Alina S., 4D
Berger, Andrew J., 2N
Bi, Weihong, 4L, 6B, 6E
Bigelow, Nicholas P., 1Q
Bougrov, Vladislav, 4A
Bowles, T. A., 3K
Brady, K. P., 3K
Butova, Darla V., 4D
Buyanovskaya, Elizaveta, 3H
Cai, Huaiyu, 4V
Cai, Peijun, 0W
Cai, Xuemei, 2F
Cao, Binfang, 4O, 52
Cao, Danhua, 2Y
Cao, Yang, 2F
Cao, Yiping, 6P
Carpenter, Amy, 1B
Carpenter, Logan, 1B
Cen, Zhao-feng, 0M, 0Q, 5G
Chen, Aiping, 4X
Chen, Daqing, 40
Chen, Guoqing, 4W
Chen, Hai-bin, 5Q
Chen, Jingling, 4G
Chen, Lawrence R., 2W
Chen, Shuyan, 6G
Chen, Wenjing, 6P
Chen, Xiaodong, 4V
Chen, Yanru, 5K
Chen, Yongxiong, 3A
Chen, Yu, 3Y
Chen, Zhe, 4T
Chen, Zhengjiang, 4R
Chen, Zhilun, 64
Cheng, Xiangai, 37, 5F, 64
Choong, Zhengyang, 4B
Choudhury, Debash, 0Y
Choy, S. H., 41
Chu, Chen-Hsien, 3Q
Chuang, Chin-Jung, 1N
Cormier, Eric, 1Z
Cui, Sheng, 22
Cui, Tingwei, 57
Cui, Yufeng, 1V
Dai, Xiang, 3F
D’Alessandris, Paul D., 1O
Danner, Aaron J., 0J
Dantcaranov, Ruslan, 48
Deng, Qiansong, 5Q
DeVore, Peter T. S., 1Q
Di, Hongwei, 4R, 4T
Dong, Liquan, 10
Dong, Qian-min, 6K
Dong, Yan-yan, 6K
Donko, Andrei L., 07
Donnelly, Judith F., 09
Donnelly, Matthew J., 09
Donnelly, Stephanie, 09
Du, Jihe, 4J
Duan, Chengfang, 0T
Duan, Cunli, 3E
Dvořák, F., 0G
Eastman, Clarke K., 1H
Egorov, Vladimir, 3H
Ellenberger, Falk, 2B
Ekimenkova, Alisa, 1S
Ezhova, Kseniia, 1S, 4A
Fan, Changjiang, 4F
Fan, Yansong, 0A
Fei, Lanlan, 35
Feng, Jie, 47
Feng, Xiao-hua, 4N
Fu, Guangwei, 4L, 6B, 6E
Fu, Shuhua, 43
Fu, Xinghu, 4L, 6B, 6E
Fu, Xiuhua, 3X
Fu, Yuegang, 1Y
Fu, Yun, 3D
Fuhrmann, Thomas, 25, 27
Conference Committee

Conference Chairs

Xu Liu, Zhejiang University (China)
Xi-Cheng Zhang, The Institute of Optics, University of Rochester (United States)

Conference Program Committee

Vasudevan Lakshminarayanan, University of Waterloo (Canada)
Eugene Arthurs, SPIE
Kathleen Robinson, SPIE
Imrana Ashraf Zahid, Quaid-i-Azam University (Pakistan)
Julie L. Bentley, The Institute of Optics, University of Rochester (United States)
Curtis Burrill, The Optical Society (United States)
Elizabeth Rogan, The Optical Society (United States)
Santiago Camacho-López, Centro de Investigación Científica y de Educación Superior de Ensenada B.C. (Mexico)
Kent D. Choquette, University of Illinois at Urbana-Champaign (United States)
Cristiano Monteiro de Barros Cordeiro, Universidade Estadual de Campinas (Brazil)
Manuel Filipe P. C. M. Martins Costa, Universidade do Minho (Portugal)
Nathalie Debaes, Vrije Universiteit Brussel (Belgium)
Judith F. Donnelly, Retired, Problem Based Learning Projects (United States)
Dirk Fabian, SPIE
Andrew Forbes, University of the Witwatersrand (South Africa)
Ajoy K. Ghatak, Indian Institute of Technology Delhi (India)
Qihuang Gong, Peking University (China)
Guangcan Guo, University of Science and Technology (China)
Jürgen Jahns, FernUniversität in Hagen (Germany)
Pratibha Jolly, University of Delhi (India)
Enock Jonathan, Chinhoyi University of Technology (Zimbabwe)
Hai Ming, University of Science and Technology (China)
Omar Alberto Ormachea, Universidad Privada Boliviana (Bolivia)
Seung-Han Park, Yonsei University (Korea, Republic of)
Thomas Pertsch, Friedrich-Schiller-Universität Jena (Germany)
Monika Raharti, Center for Young Scientists (Indonesia)
Joseph A. Shaw, Montana State University (United States)
K. Alan Shore, Bangor University (United Kingdom)
Daoyin Yu, Tianjin University (China)
María J. Yzuel, Universidad Autònoma de Barcelona (Spain)
Victor N. Zadkov, M.V. Lomonosov Moscow State University
(Russian Federation)
Mourad Zghal, University of Carthage (Tunisia)

Session Chairs

ETOP Plenary Session I
Xi-Cheng Zhang, The Institute of Optics, University of Rochester
(United States)

ETOP Plenary Session II
Xi-Cheng Zhang, The Institute of Optics, University of Rochester
(United States)

Curriculum Development in Optics and Photonics Education I
Imrana Ashraf Zahid, Quaid-i-Azam University (Pakistan)

New Pedagogical Methods, Tools and Models in Optical Education I
Mourad Zghal, University of Carthage (Tunisia)

Laboratories for Optics Education I
Monika Raharti, Center for Young Scientists (Indonesia)

New Pedagogical Methods, Tools and Models in Optical Education II
Andrew J. Berger, The Institute of Optics, University of Rochester
(United States)
Khaled J. Habib, Kuwait Institute for Scientific Research (Kuwait)

Laboratories for Optics Education II
Michael Vollmer, Technische Hochschule Brandenburg (Germany)
Jephias Gwamuri, Michigan Technological University (United States)

Education and Training for Multidisciplinary Education II
Michael Wick, Hochschule für Angewandte Wissenschaften und Kunste
(Germany)

Digital and Internet Technology for Optical Education
Aaron J. Danner, National University of Singapore (Singapore)

International Exchange and Cooperation for Optical Education
Ahmadou Wague, University Cheikh Anta Diop de Dakar (Senegal)

ETOP Keynote Session I
H. Paul Urbach, Technische Universität Delft (Netherlands)

Curriculum Development in Optics and Photonics Education III
Mourad Zghal, University of Carthage (Tunisia)
New Pedagogical Methods, Tools and Models in Optical Education III
Imrana Ashraf Zahid, Quaid-i-Azam University (Pakistan)

Laboratories for Optics Education III
Monika Raharti, Center for Young Scientists (Indonesia)

Training Programs for Senior Undergraduates
Joseph A. Shaw, Montana State University (United States)

Curriculum Development in Optics and Photonics Education IV
Julie L. Bentley, The Institute of Optics, University of Rochester (United States)

New Pedagogical Methods, Tools and Models in Optical Education IV
Imrana Ashraf Zahid, Quaid-i-Azam University (Pakistan)
Enock Jonathan, Chinhoyi University of Technology (Zimbabwe)

Laboratories for Optics Education IV
Xiaodong Zheng, Zhejiang University (China)

ETOP Keynote Session II
Xu Liu, Zhejiang University (China)

ETOP Keynote Session III
Xu Liu, Zhejiang University (China)
Introduction

The 14th Conference on Education and Training in Optics and Photonics: ETOP 2017 was held at Zhejiang University, Hangzhou, China, on 29–31 May 2017. The conference gathered 286 educators in the areas of optics and photonics from 28 countries and regions.

This was the first ETOP conference held in China after its founding in 1988, and the largest ETOP conference by the number of participants and presentations.

ETOP 2017 brought together leading optics and photonics educators from all levels and orientations to discuss, demonstrate, and learn about new developments and approaches of teaching in their fields. Through presentations, panel discussions, workshops and exhibits, it was the intent of this conference to inform professors, students, teachers, and professional trainers on how to teach optics and photonics for the future.

The teaching of optics and photonics, critical fields at the core of today’s worldwide technological infrastructure, must continually get evaluated and improved in order to meet the growing demands of research, science, and industry.

We had a very successful ETOP meeting. The number of submissions (both of published papers and of abstracts for the program) have set the new record in the history of the conference.

Xu Liu
Xi-Cheng Zhang