The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)

ISBN: 978-1-5106-1271-6

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2017, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/17/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

vii Authors
ix Conference Committee

SESSION 1 POLARIMETRIC INSTRUMENTS

10407 02	A fast Stokes polarimeter: preliminary design [10407-1]
10407 04	Snapshot hyperspectral imaging Fourier transform spectropolarimeter [10407-3]
10407 05	Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics and architectural comparison of polarimeter techniques [10407-4]
10407 06	Camera characterization for all-sky polarization measurements during the 2017 solar eclipse [10407-5]

SESSION 2 POLARIZATION ANALYSIS OF OPTICAL SYSTEMS

10407 07	Advances in modeling polarimeter performance (Invited Paper) [10407-6]
10407 09	Rigorous vector wave propagation for arbitrary flat media [10407-8]
10407 0A	Polarization modeling and predictions for DKIST part 2: application of the Berreman calculus to spectral polarization fringes of beamsplitters and crystal retarders [10407-9]

SESSION 3 POLARIMETRIC DATA ANALYSIS

10407 0B	Analytic statistics for Stokes polarimetry [10407-10]
10407 0C	Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters [10407-11]
10407 0D	Compressed channeled linear imaging polarimetry [10407-12]

SESSION 4 METHODS OF DISPLAYING POLARIZATION DATA

| 10407 0E | Moving towards more intuitive display strategies for polarimetric image data [10407-13] |
| 10407 0F | Engaging Montana high school students in optical sciences with a polarization photo contest [10407-14] |
SESSION 5 POLARIZATION-BASED OPTICAL SYSTEMS AND COMPONENTS

10407 0G	Polarization-color mapping strategies: catching up with color theory [10407-40]
10407 0H	Polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating [10407-16]
10407 0K	Fraunhofer line optical correlator for improvement of initial orbit determination [10407-19]

SESSION 6 MUELLER MATRIX POLARIMETERS

| 10407 0L | A nine-channeled partial Mueller matrix polarimeter [10407-20] |
| 10407 0M | Hyperspectroscopic Mueller-matrix polarimeter based on channeled polarimetry [10407-21] |

SESSION 7 POLARIZATION IN REMOTE SENSING: ATMOSPHERIC

| 10407 0O | Cloud thermodynamic phase detection using an all-sky imaging polarimeter [10407-23] |

SESSION 8 POLARIMETRY APPLICATIONS: MEDICAL

| 10407 0Q | The hand-hold polarization-sensitive spectral domain optical coherence and its applications [10407-25] |

SESSION 9 POLARIMETRY APPLICATIONS: TARGET DETECTION/CHARACTERIZATION

10407 0R	Polarimetric LIDAR with FRI sampling for target characterization [10407-26]
10407 0S	Active infrared polarimetric imaging demonstrator by orthogonality breaking sensing [10407-27]
10407 0T	Polarization vector signatures for target identification [10407-28]
10407 0U	Surface parameter based image estimation from application of a scattering model to polarized light measurements [10407-29]

SESSION 10 POLARIZATION IN REMOTE SENSING: ASTRONOMY

| 10407 0V | High contrast observations of circumstellar disks with the Gemini Planet Imager’s polarimetry mode (Invited Paper) [10407-30] |
SESSION 11 MATHEMATICS OF COHERENCE, POLARIZATION, AND SCATTERING

10407 0X Controlling the spatial coherence and polarization of a quasi-homogeneous, planar electromagnetic source for remote sensing applications [10407-32]

10407 0Y Statistics of partially-polarized fields: beyond the Stokes vector and coherence matrix [10407-33]

SESSION 12 POLARIZATION IN REMOTE SENSING: BIOLOGY

10407 0Z Estimating the relative water content of leaves in a cotton canopy [10407-34]

POSTER SESSION

10407 11 Passive millimeter-wave polarization characteristics of several common structures [10407-36]

10407 12 Active polarization imaging system based on optical heterodyne balanced receiver [10407-37]

10407 13 A partial Mueller matrix polarimeter using two photoelastic modulator and polarizer pairs [10407-38]

10407 14 System of Mueller-Jones matrix polarizing mapping of blood plasma films in breast pathology [10407-39]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abeywickrema, U., 0T
Alenin, Andrey S., 02, 0G, 0L
Alouini, Mehdi, 0S
Asari, Vijayan K., 0C
Banerjee, P., 0T
Baumbauer, Carol L., 0F, 0H
Beamer, D. K., 0T
Boese, Orrin, 0F
Boger, James K., 0F
Bos, Steven P., 09
Bradley, Christine, 0Z
Bruce, Kevin, 0Z
Castorena, Juan, 0R
Charnotskii, Mikhail, 0Y
Cheng, Yayan, 11
Chipman, Russell A., 07, 0Z
Craven, Julie M., 0D
Creusere, Charles D., 0R
Dahl, Laura M., 06, 0F, 0Q
Dahlgren, Robert, 0Z
Daughtry, Craig, 0Z
Dickersheets, David L., 0H
Dilts, James, 0H
Disposito, Thomas M., 0V
Fade, Julien, 0S
Fitzgerald, Michael P., 0V
Frein, Ludovic, 0S
French, Andrew, 0Z
Gao, Wannong, 0Q
Graham, James R., 0V
Gray, Tristan, 0H
Gu, Liangqi, 11
Haffert, Sebastiyan Y., 09
Hagen, Nathan, 0B
Han, Zhuoting, 11
Harrington, David M., 0A
Hashimoto, Taiga, 06
Hohn, Andrew J., 0F, 0H
Hou, Peipei, 12
Hu, Fei, 11
Hu, Yan, 11
Jiang, Hanwan, 0U
Kalas, Paul, 0V
Kawabata, Shuichi, 13
Keller, Christoph U., 09, 0A
Krus, Andrew W., 0G
Kudnov, Michael W., 04, 05, 0K
Kupinski, Meredith K., 0U, 0Z
LaCasse, Charles F., 0D
Laurie, Seth A., 06
Lee, Dennis J., 0D
Liu, Hao, 0Q
Liu, liren, 12
Loas, Goul’chen, 0S
Lu, Zhiyong, 12
Luan, Zhu, 12
Macintosh, Bruce, 0V
Michida, Hiroshi, 0M
Miliar-Blanchaer, Maxwell A., 0V
Moon, Benjamin, 0F, 0H
Nakagawa, Wataru, 0F, 0H
Nugent, Paul W., 0F
O’Connor, B. T., 0S
Oka, Kazuhiro, 0M
Ortega-Quijano, Noé, 0S
Otan, Yukisho, 13
Pantalone, Brett A., 0K
Parnet, François, 0S
Perrin, Marshall D., 0V
Radchenko, Konstantyn O., 14
Ratliff, Bradley M., 0C, 0E
Riesland, David W., 0F
Rodriguez-Herrera, Oscar G., 0X
Sargent, Garrett C., 0C
Sayama, Kodai, 0M
Sen, Pratik, 0S
Shaw, Joseph A., 06, 0F, 0H, 0O
Snik, Frans, 0A
Stahl, Kevin, 0V
Sueoka, Stacey R., 0A
Sun, Jianfeng, 12
Tarnovskiy, Mykola H., 14
Tauc, Martin Jan, 0F, 0O
Tipol, Nia Natasha, 13
Tyo, J. Scott, 02, 0E, 0G, 0L
van Herten, Gerard, 0A
Vanderbilt, Vern, 0Z
Vaughn, Israel J., 02, 0G, 0L
Veelz, David G., 0R, 0U
Vijeralhna, Brandi, 0R
Xu, Qian, 12
Yang, Ruonan, 05
Youngs, E. J., 04
Zabolotna, Natalia I., 14
Zhan, Hanyu, 0U
Zhou, Yu, 12
Conference Committee

Program Track Chair

Allen H.-L. Huang, University of Wisconsin-Madison (United States)

Conference Chairs

Joseph A. Shaw, Montana State University (United States)
Frans Snik, Leiden University (Netherlands)

Conference Program Committee

Bruce E. Bernacki, Pacific Northwest National Laboratory (United States)
David B. Chenault, Polaris Sensor Technologies, Inc. (United States)
Russell A. Chipman, College of Optical Sciences, The University of Arizona (United States)
Julia M. Craven, Sandia National Laboratories (United States)
Aristide C. Dogariu, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
Dennis H. Goldstein, Polaris Sensor Technologies Inc. (United States)
Michael Kudenov, North Carolina State University (United States)
Kazuhiko Oka, Hirosaki University (Japan)
Yoav Y. Schechner, Technion-Israel Institute of Technology (Israel)
Jean-Marc Thériault, Defence Research and Development Canada, Valcartier (Canada)
J. Scott Tyo, UNSW Canberra (Australia)

Session Chairs

1. Polarimetric Instruments
 Frans Snik, Leiden Observatory (Netherlands)

2. Polarization Analysis of Optical Systems
 Kazuhiko Oka, Hirosaki University (Japan)

3. Polarimetric Data Analysis
 J. Scott Tyo, UNSW Canberra (Australia)

4. Methods of Displaying Polarization Data
 Joseph A. Shaw, Montana State University (United States)
5 Polarization-Based Optical Systems and Components
Michael W. Kudenov, North Carolina State University (United States)

6 Mueller Matrix Polarimeters
Russell A. Chipman, College of Optical Sciences, The University of Arizona (United States)

7 Polarization in Remote Sensing: Atmospheric
Joseph A. Shaw, Montana State University (United States)

8 Polarimetry Applications: Medical
Julia M. Craven, Sandia National Laboratories (United States)

9 Polarimetry Applications: Target Detection/Characterization
Dennis J. Lee, Sandia National Laboratories (United States)

10 Polarization in Remote Sensing: Astronomy
Frans Snik, Leiden Observatory (Netherlands)

11 Mathematics of Coherence, Polarization, and Scattering
Frans Snik, Leiden Observatory (Netherlands)

12 Polarization in Remote Sensing: Biology
Joseph A. Shaw, Montana State University (United States)