Design and optimization of a fiber optic data link for new generation on-board SAR processing architectures

Caterina Ciminelli
Francesco Dell'Olio
Mario N. Armenise
Francesco Iacomacci
et al.
Design and optimization of a fiber optic data link for new generation on-board SAR processing architectures

Caterina Ciminelli, Francesco Dell'Olio, Mario N. Armenise
Francesco Iacomacci *
Franca Pasquali †, Roberto Formaro †
Optoelectronics Laboratory, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
Tel: +39 080 5963404, Fax: +39 080 5963410
e-mail: c.ciminelli@poliba.it
(*) Thales Alenia Space Italia S.p.A., Via Saccomuro 24, 00131 Rome, Italy
e-mail: francesco.iacomacci@thalesaleniaspace.com
(†) Italian Space Agency (ASI), Viale Liegi 26, 00198 Rome, Italy
e-mail: franca.pasquali@asi.it

Abstract—A fiber optic digital link for on-board data handling is modeled, designed and optimized in this paper. Design requirements and constraints relevant to the link, which is in the frame of novel on-board processing architectures, are discussed. Two possible link configurations are investigated, showing their advantages and disadvantages. An accurate mathematical model of each link component and the entire system is reported and results of link simulation based on those models are presented. Finally, some details on the optimized design are provided.

Keywords - on-board data handling; optical link; space photonics; optoelectronics.

I. INTRODUCTION

In the last few years, the research effort on photonic systems for space applications is constantly growing [1-3], especially in three key application domains, i.e. analog and digital communication links [4], RF signal processing [5], and sensing [6-10]. In particular, as they allow both elimination of cable-to-cable electromagnetic-interference effects and reduction of size, weight, and power consumption, fiber-optic links for on-board data handling are the topic of an increasing R&D activity involving several research groups all over the world, the main space agencies, and companies.

Since 1992, when the first spacecraft using a fiber-optic data bus [11] was launched in the framework of the NASA mission SAMPEX (Solar Anomalous and Magnetospheric Particle Explorer), high speed optical data links have been utilized on board of some other satellites, e.g. the ESA SMOS (Soil Moisture and Ocean Salinity) satellite, in which a fiber-optic network allows the clock signal distribution and the data transfer [12].

A fiber-optic digital link for space applications, called SpaceFibre, operating up to 3.125 Gb/s has been recently reported [13]. The system, which is based on two identical transceivers both including a directly modulated semiconductor laser @ 0.85 μm and a PIN GaAs photodiode, exhibits a bit error rate (BER) less than 10^-12.

In this paper we report on modeling, design and optimization of a high speed fiber optic data link to be included in a new complex processing architecture for SAR (Synthetic-Aperture Radar) applications that is under development at Thales Alenia Space-Italy in the framework of an ASI (Italian Space Agency) co-funded project. Data transfer from analog-to-digital converters and processing nodes has been envisaged as the link task. The link operating temperature is in the range -10 °C +50 °C.

The link configuration is discussed and all the design choices are justified. Two options for the transmitter module implementation are compared, i.e. the direct modulation of the laser source and the use of a continuous-wave (CW) laser together with an external electro-optic modulator.

Results of the link simulation in several operating conditions through an accurate mathematical model are shown. Finally, achievements of the optimization activity are summarized.

II. LINK CONFIGURATION

Requirements of the digital processing architecture impose that the designed optical link has to transfer a number N_{sq} of digital sequences ranging from 2 to 16. Each sequence has a bit rate (BR) varying from a few Gb/s to few tens of Gb/s. The link BER should be less than 10^{-12}.

Since N_{sq} is not so large, the link configuration that appears the most appropriate is that one including N_{sq} separate fiber
transmission channels (see Fig. 1). \(N_{sq} \) transmitters and receivers should be used for the configuration implementation.

Therefore that class of laser has been first selected and compared to VCSELS.

![Figure 1.](image1.png)

Table I. Comparison between FP, DFB, and VCSEL.

<table>
<thead>
<tr>
<th></th>
<th>FP</th>
<th>DFB</th>
<th>VCSEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>- Single-mode spectrum</td>
<td>- High efficiency</td>
<td>- Multimodal spectrum</td>
</tr>
<tr>
<td></td>
<td>- Medium/low cost</td>
<td>- Consolidated technology</td>
<td>- Low cost</td>
</tr>
<tr>
<td></td>
<td>- Low efficiency</td>
<td>- Low RIN (in the range -140 dB/Hz ÷ -160 dB/Hz)</td>
<td>- Low power consumption</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>- Multimodal spectrum</td>
<td>- Medium/high cost</td>
<td>- Not consolidated technology @ 1.3 μm and 1.55 μm</td>
</tr>
<tr>
<td></td>
<td>- High RIN* (-125 dB/Hz)</td>
<td></td>
<td>- Low output power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- High RIN (-120 dB/Hz)</td>
</tr>
</tbody>
</table>

*\(\text{RIN = Relative Intensity Noise.} \)

For \(BR > 2.5 \text{ Gb/s} \) CW DFB lasers seem to be the best option because, when thermally stabilized, they can exhibit a very wide operating temperature range (\(-40 \div +85 \text{ °C}\)). For external modulation the best choice would be the use of lithium niobate electro-optic interferometric modulators.

PIN photodiodes have been selected for the optical/electrical transduction because they generate a lower noise level than APDs (avalanche photodiodes).

During the ESA SMOS mission the radiation resistance of single-mode optical fibers has been proved to be acceptable and this is why it has been selected for our data link.

III. **Link Modelling, Simulation, and Design**

Link design/optimization requires the development of an appropriate simulation tool based on realistic mathematical models of the optoelectronic components. By simulating the optical link in several operating conditions, it should be possible to identify the requirements that each component should exhibit to achieve the desired system performance.

The DFB CW laser model takes into account the phase noise generated by the device and the side modes excited within the laser cavity.

Modeling of the DFB directly modulated laser is based on the following rate equations:
\[
\frac{dS(t)}{dt} = \Gamma g_0 \left[N(t) - N_e \right] \frac{1}{1 + \varepsilon S(t)} S(t) - \frac{\alpha}{\tau_p} S(t) + \frac{\Gamma}{\tau_a} N(t) \quad (1)
\]

where \(S(t), N(t) \) are the density of photons emitted by the laser, the carrier density, and the instantaneous phase of the laser beam, \(\Gamma \) is the confinement factor of the laser resonant mode, \(g_0 \) is the device differential gain, \(N_e \) is the carrier density at transparency, \(\varepsilon \) is the nonlinear gain factor, \(\tau_p \) is the photons lifetime, \(\tau_a \) is the carrier lifetime, \(q \) is the electron charge, \(V_{\text{att}} \) is the active region volume, \(\beta \) is the spontaneous emission factor, and \(\alpha_L \) is the linewidth enhancement factor.

The laser output power is given by:

\[
P(t) = \frac{n_0 S(t) V_{\text{att}} h \nu}{2 \Gamma \tau_p} \quad (2)
\]

where \(n_0 \) is the laser quantum efficiency, \(h \) is the Planck’s constant, and \(\nu \) is the laser operating frequency.

Parameters of the laser model can be derived on the basis of the specific device performance, by using the technique reported in [18].

Time dependence of the output optical power is shown in Fig. 3 for a DFB laser @ 1.55 \(\mu m \) with a linewidth = 10 MHz, a side mode suppression ratio of 30 dB and a RIN = -140 dB/Hz. The laser diode is modulated by a 2.5 Gb/s digital signal and its output power is 5 dBm (= 3.16 mW).

![Optical power vs Time](image)

Figure 3. Time dependence of the DFB laser output. Laser power = 5 dBm.

The VCSEL model is rate equations-based, too. Since static/dynamic behavior of this component is strongly influenced by thermal drift, the model includes also thermal effects through an appropriate rate equation taking into account the device thermal resistance.

Mach-Zehnder electro-optic modulator has been modeled by the following equation:

\[
E_{\text{out}}(t) = E_{\text{in}}(t) \cos[\Phi(t)] \exp[-i \alpha_m \Phi(t)] \quad (3)
\]

where \(E_{\text{in}} \) and \(E_{\text{out}} \) are the electric field amplitudes at modulator input and output, respectively, \(\Phi \) is the phase shift between the beams coming out from the modulators, and \(\alpha_m \) is the chirp factor.

Current generated by the PIN photodiode has been modeled as:

\[
i_{\text{pd}}(t) = R P_{\text{pd}} + i_{\text{th}} + i_{\text{sh}} \quad (4)
\]

where \(R \) is the device responsivity, \(P_{\text{pd}} \) is the optical power at photodiode input, \(i_{\text{th}} \) is the contribution due to thermal noise, and \(i_{\text{sh}} \) is the contribution due to shot noise.

Thermal noise variance can be written as:

\[
\sigma_{\text{th}}^2 = F_n \Delta f \frac{4 k_b T}{R_L} \quad (5)
\]

where \(F_n \) is the noise factor of the electronic amplifier included in the receiver, \(\Delta f \) is the photo-receiver bandwidth, \(k_b \) is the Boltzmann constant, \(T \) is the temperature, and \(R_L \) is the load resistance.

Shot noise variance is equal to:

\[
\sigma_{\text{sh}}^2 = 2 q \Delta f \frac{R P_{\text{pd}}}{R_L} + i_{\text{sh}} \quad (6)
\]

where \(i_{\text{sh}} \) is the photodiode dark current.

Optical propagation characteristics within the fiber have been derived by using the following nonlinear Schrödinger equation:

\[
\frac{\partial A}{\partial z} + i \beta_2 \frac{\partial^2 A}{\partial t^2} = -\frac{\alpha}{2} A + i \gamma A |A|^2 \quad (7)
\]

where

\[
\gamma = \frac{2 \pi \bar{n}_2}{\lambda A_{\text{eff}}} \quad (8)
\]

A is the optical beam amplitude, \(\beta_2 \) is the group velocity dispersion, \(\bar{n}_2 \) takes into account the Kerr effect, \(\alpha \) is the propagation loss, \(A_{\text{eff}} \) is the propagating mode effective area, and \(\lambda \) is the wavelength.

Assuming a fiber length of 1 m, the link has been simulated for \(BR = 2.5 \text{ Gb/s} \). In this case direct modulation of the laser diode is the best option. Two laser sources, i.e. the VCSEL and the DFB laser, have been compared in terms of the link BER (see Fig. 4). On the basis of our performance investigation of laser diodes available on the market, we assume that maximum optical power of VCSEL and DFB laser is 3 dBm and 7 dBm, respectively. Other performance parameters of the two laser sources have been fixed considering typical values of devices available on the European market.
For power values \(\leq 3 \) dBm, the link performance achievable through the two laser is similar but the requirement \(\text{BER} < 10^{-12} \) is not fulfilled. BER values less than \(10^{-12} \) can be obtained only by utilizing the DFB laser. The minimum DFB laser power for the specification achievement is 3.3 dBm. Assuming this power value, the eye diagram has been calculated by our simulation tool (see Fig. 5), for both NRZ (non-return-to-zero) and RZ (return-to-zero), encoding. The use of RZ encoding degrades the link performance. In fact, the BER is \(10^{-12} \) for the NRZ encoding and \(7 \times 10^{-12} \) for the RZ one.

The link performance when \(\text{BR} = 10 \) Gb/s has been evaluated by assuming that, in this case, the transmitter is implemented through external modulation. The relevant eye diagram is shown in Fig. 6 for laser power = 10 dBm (typical value for CW DFB laser). In this case the design specification (BER \(< 10^{-12} \)) is fulfilled and the eye pattern is well open.

On the basis of our simulations in a wide range of operating conditions, the link has been designed/optimized when \(\text{BR} = 2.5 \) Gb/s and 10 Gb/s. Results are summarized in Table 2. Performance of the optoelectronic components to be used are clearly highlighted.

IV. CONCLUSIONS

A digital optical link for on-board data handling has been modeled, and designed. Design optimization has been also carried out. For bit rate values less than 2.5 Gb/s, the DFB diode laser direct modulation has been considered the best option for the transmitter implementation while external modulation of a CW DFB laser through a lithium niobate electro-optic modulator has been preferred for higher bit rate values. The receiver key component is a low-noise PIN photodiode.

TABLE II. COMPARISON BETWEEN FP, DFB, AND VCSEL.

<table>
<thead>
<tr>
<th>Component</th>
<th>BR = 2.5 Gb/s</th>
<th>BR = 10 Gb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber length</td>
<td>1 m</td>
<td>1 m</td>
</tr>
<tr>
<td>Data encoding</td>
<td>NRZ</td>
<td>NRZ</td>
</tr>
<tr>
<td>Optoelectronic components for E/O transduction</td>
<td>Directly modulated DFB laser with maximum output power = 5 dBm and RIN = -140 dB/Hz</td>
<td>CW DFB laser with maximum output power = 20 dBm and RIN = -140 dB/Hz + (\cdot) Lithium niobate electro-optic Mach-Zehnder modulator with bandwidth > 10 GHz and extinction ratio > 20 dB</td>
</tr>
<tr>
<td>Optoelectronic components for O/E transduction</td>
<td>PIN photodiode with a responsivity of 0.9 and a bandwidth > 2 GHz</td>
<td>PIN photodiode with responsivity > 0.6 and bandwidth > 10 GHz</td>
</tr>
<tr>
<td>Laser power</td>
<td>3.3 dBm</td>
<td>10 dBm</td>
</tr>
<tr>
<td>Average power of the fiber propagation beam</td>
<td>1.89 dBm</td>
<td>6.86 dBm</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1 W</td>
<td>5 W</td>
</tr>
<tr>
<td>BER</td>
<td>(1 \times 10^{-12})</td>
<td>(< 10^{-12})</td>
</tr>
</tbody>
</table>
All link components have been numerically modeled and the system has been simulated in a wide range of operating conditions, comparing also different configuration options.

The optimized link has a power consumption of a few watts and a BER $\leq 10^{-12}$.

Experimental characterization of the components and their space qualification is crucial for further development of the reported technology. A very realistic link demonstrator could be fabricated after this development.

REFERENCES

