Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVII

David H. Kessel
Tayyaba Hasan
Editors

27–29 January 2018
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10476
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 1605-7422
ISSN: 1996-756X (electronic)
ISBN: 9781510614376

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, A0, A1, A2, , followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Authors</td>
</tr>
<tr>
<td>vii</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>ix</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

PHOTODYNAMIC THERAPY I

| 10476 02 | Photodynamic therapy: the role of paraptosis [10476-1] |

PHOTODYNAMIC THERAPY II

| 10476 08 | Efficient *in vitro* photodynamic inactivation of *Candida albicans* by repetitive light doses [10476-7] |

PHOTODYNAMIC THERAPY III

10476 09	Nanoparticle-based photodynamic therapy on non-melanoma skin cancer [10476-8]
10476 0A	Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity [10476-9]
10476 0D	The NPe6 fluorescence measurements by using a fluorescence sensing system for skin photosensitivity risk assessment after photodynamic therapy [10476-12]

PHOTODYNAMIC THERAPY IV

| 10476 0F | Light fluence dosimetry in lung-simulating cavities [10476-14] |

PHOTODYNAMIC THERAPY V

| 10476 0L | A quality assurance program for clinical PDT [10476-20] |

PHOTODYNAMIC THERAPY VII

<p>| 10476 0P | Non-toxic approach for treatment of breast cancer and its cutaneous metastasis: Capecitabine (Xeloda) enhanced photodynamic therapy in a murine tumor model [10476-24] |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Cellular pH and PI3K signaling as determinants of Protoporphyrin IX conversion and ALA PDT response</td>
<td>[10476-26]</td>
</tr>
<tr>
<td>OS</td>
<td>Low-dose PDT on breast cancer spheroids</td>
<td>[10476-27]</td>
</tr>
<tr>
<td>OT</td>
<td>High energy photons excited photodynamic cancer therapy in vitro</td>
<td>[10476-28]</td>
</tr>
<tr>
<td>OV</td>
<td>Reactive oxygen species explicit dosimetry (ROSED) of a type 1 photosensitizer</td>
<td>[10476-30]</td>
</tr>
<tr>
<td>OW</td>
<td>In vitro evaluation of photodynamic therapy using redox-responsive nanoparticles carrying PpIX</td>
<td>[10476-31]</td>
</tr>
<tr>
<td>XV</td>
<td>Photodynamic inactivation of Staphylococcus aureus and Escherichia coli using a new bacteriochlorin as photosensitizer</td>
<td>[10476-32]</td>
</tr>
<tr>
<td>VY</td>
<td>Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy</td>
<td>[10476-34]</td>
</tr>
<tr>
<td>VZ</td>
<td>HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy</td>
<td>[10476-36]</td>
</tr>
<tr>
<td>10</td>
<td>Mechanism to preserve phrenic nerve function during photosensitization reaction: drug uptake and photosensitization reaction effect on electric propagation</td>
<td>[10476-37]</td>
</tr>
<tr>
<td>11</td>
<td>3-compartment talaporfрин sodium pharmacokinetic model by optimization using fluorescence measurement data from canine skin to estimate the concentration in interstitial space</td>
<td>[10476-38]</td>
</tr>
<tr>
<td>12</td>
<td>Photodynamic inactivation using curcuminoids and Photogem on caenorhabditis elegans</td>
<td>[10476-39]</td>
</tr>
<tr>
<td>13</td>
<td>Influence of different coupling agents on the light-phantom interface</td>
<td>[10476-41]</td>
</tr>
<tr>
<td>14</td>
<td>Improvement of the light-tissue coupling for better outcome of phototherapies</td>
<td>[10476-42]</td>
</tr>
<tr>
<td>16</td>
<td>Subcellular localization and photodynamic activity of Photodithazine (glucosamine salt of chlorin e6) in murine melanoma B16-F10: an in vitro and in vivo study</td>
<td>[10476-44]</td>
</tr>
<tr>
<td>17</td>
<td>Verteporfin heterogeneity in pancreatic adenocarcinoma and the relationship to tumor vasculature and collagen distribution</td>
<td>[10476-45]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Afonso, Ana, 12
Aiyoshi, Eitaro, 11
Albuquerque, Yulli R., 12
Anand, Sanjay, 0P
Anderson, Michael, 0R
Anibal, Fernanda F., 12
Arai, Tsunenori, 0D, 10, 11
Arce-Diego, J. L., 09
Barboza, Diego D., 0X
Beeson, Karl, 0F
Bullock, Taylor, 0P
Campos, C. P., 0S
Celli, Jonathan, 0R
Cengel, Keith, 0Y
Chin, Wei-Chun, 0T
Cho, Won-Jin, 02
Clement, Sandhyia, 0A
da Silva, Dilies Ferreira, 14
de Oliveira, Kleber Thiago, 0X, 12
de Souza, Clovis W. O., 0X, 12
Deng, Wei, 0A
Denisyuk, Anton, 0P
Dimofte, Andreea, 0F, 0L, 0Y
El-Hamidi, Hamid, 0R
Fanjul-Vélez, F., 09
Finlay, Jarod C., 0L, 0Y
Fortunato, Thereal Cury, 13, 14
Geralde, Mariana Carreira, 0X
Goldys, Ewa M., 0A
Govande, Mukul, 0P
Grecco, Clovis, 14
Gunn, Jason, 17
Guo, Yiping, 0T
Hagiwara, Masaru, 0D
Hamada, Risa, 10
Hoglund, Roy, 0T
Huang, Zheng, 0V
Ikeda, Norihiko, 0D
Imai, Kentaro, 0D
Inoue, Tatsuya, 0D
Kajiwara, Naohiro, 0D
Kakihana, Masatoshi, 0D
Kautzka, Zofia, 0A
Kessel, David, 02
Kim, Hyeong-Reh, 02
Kim, Michele M., 0F, 0V, 0Y
Kurachi, Cristina, 0S, 14, 16
Lee, Shin-Yu, 0Z
Li, Changqing, 0T
Lun, Michael, 0T
Lyles, Zachary, 0W
Maehara, Sachoio, 0D
Marra, Kayla, 17
Martins, Laura C. A., 0X
Maytin, Edward V., 0P
Mayumi Inada, Natalia, 05, 0W, 12
Moriyama, Lilian Tan, 13, 14
Nieskoski, Michael, 17
Nogueira, Marcelo Saito, 16
Ogawa, Emiyu, 0D, 10, 11
Ohira, Tatsu, 0D
Ohtani, Keishi, 0D
Ong, T. Hon, 0L, 0V, 0Y
Ono, Bruno Andrade, 16
Padawer-Curry, Jonah, 0F, 0Y
Parlov, Evgeni, 0F
Pires, Layla, 16
Pogue, Brian W., 17
Potasek, Mary, 0F
Prataviera, Sebastião, 0X, 12, 14, 16
Ramirez Ramirez, J., 08
Ramirez-San-Juan, J. C., 08
Ramos-Garcia, R., 08
Salvador Bagnato, Vanderlei, 0W, 12, 13, 14
Sheng, Shi, 0T
Shieh, Ming-Jium, 0Z
Souza Leite, Ilaiöi, 0W
Souza, Lorissa M., 02
Spezzia-Mazzocco, T., 08
Takahashi, Haruka, 10
Torres-Hurtado, S. A., 08
Tsai, Shih-Ming, 0T
Tu, Ting-Yu, 0Z
Uliana, Marciana P., 0X
Uno, Yuko, 11
Usuda, Jitsu, 0D
Vincent, Phuong, 17
Viverra-Escoto, Juan L., 0W
Vollet Filho, José Dicceu, 14
Wang, Chung-Hao, 0Z
Xie, Rui, 17
Yang, Shu-Jyuan, 0Z
Zhang, Wei, 0T
Zhu, Timothy C., 0F, 0L, 0V, 0Y
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard Medical School (United States)

Program Track Chair

Brian Jet-Fei Wong, Beckman Laser Institute and Medical Clinic (United States)

Conference Chairs

David H. Kessel, Wayne State University (United States)
Tayyaba Hasan, Massachusetts General Hospital (United States)

Conference Program Committee

Imran Rizvi, Brigham and Women's Hospital (United States)
Jonathan P. Celli, University of Massachusetts Boston (United States)

Session Chairs

1 Photodynamic Therapy I
 David H. Kessel, Wayne State University School of Medicine (United States)

2 Photodynamic Therapy II
 Imran Rizvi, Wellman Center for Photomedicine (United States)

3 Photodynamic Therapy III
 Sandra O. Gollnick, Roswell Park Cancer Institute (United States)

4 Photodynamic Therapy IV
 Theresa M. Busch, University of Pennsylvania (United States)

5 Photodynamic Therapy V
 Sanjay Anand, Lerner Research Institute - Cleveland Clinic (United States)
6 Photodynamic Therapy VI
Knight K. Wang, Mayo Clinic (United States)

7 Photodynamic Therapy VII
Timothy C. Zhu, The University of Pennsylvania Health System
(United States)

8 Photodynamic Therapy VIII
Srivalleesha Mallidi, Wellman Center for Photomedicine
(United States)

9 Joint Session with Conferences 10476 and 10478: Isotope Optical Imaging and Cancer
Sylvain Gioux, Université de Strasbourg (France)

10 Joint Session with Conferences 10476 and 10478: Radiation Therapy Optical Imaging and Sensing
Brian W. Pogue, Thayer School of Engineering at Dartmouth
(United States)
Introduction

SPIE has a long association with the field of Photodynamic Therapy with sessions devoted to the topic being part of the BIOS program since 1989. Several conferences devoted to the topic have also been sponsored. The first such conference was organized by Douglas Neckers and Tayyaba Hasan in 1987. One of the founders of the PDT effort, Thomas J. Dougherty was the initial organizer for the BIOS conferences beginning in 1989. These were held in Los Angeles until 1995, when the site was moved to San Jose and later to San Francisco. Dr. Dougherty continued to organize the PDT sessions until 2003. I began organizing the PDT BIOS conferences in 2004 with Prof. Hasan joining as co-organizer more recently.

In 1993, a compendium containing reprints of 89 key papers relating to PDT was published as part of the SPIE ‘Milestone’ Series, with the title, Selected Papers on Photodynamic Therapy. The Milestone Series now contains over 150 volumes dealing with various aspects of optics and related topics. The annual inclusion of sessions relating to photodynamic effects provides an opportunity of basic researchers to meet with those involved in applications research. Since elements of dosimetry form an important part of PDT optimization, it is especially useful to bring together people working in bioengineering, optics, photophysics, and photochemistry.

SPIE was also involved in the organization of the 12th World Conference of the International Photodynamic Association in 2009 in Seattle. This was a remarkable effort with the entire on-site program initially dealt with by two SPIE personnel with only one remaining for the final few days. Since all prior and subsequent IPA conferences involved multiple audio-visual personnel, guards, registration aides and other helpers, this example provides an example of the organizational abilities of SPIE. The annual BIOS conferences continue to attract a series of talks designed to illustrate the biomedical applications of PDT along with a summary of current basic research efforts.

David H. Kessel
Tayyaba Hasan