Contents

vii Authors
ix Conference Committee
xiii Introduction

INFORMATIVE CONTENT OF STATISTICAL OPTICAL FIELDS, INCLUDING SINGULAR OPTICS, PARTIAL COHERENCE AND POLARIZATION

10612 02 Recent progress on the unified theory of polarization and coherence for stochastic electromagnetic fields (Invited Paper) [10612-90]
10612 03 Laguerre-Gaussian beam transformations by the double-phase-ramp converter: singular skeleton formation and its sensitivity to small misalignments [10612-18]
10612 04 Optical vortex microscope with the simple phase object [10612-9]
10612 05 Experimental demonstration of the vertical spin existence in evanescent waves [10612-10]
10612 06 Interaction of waves under diffraction on coupling of two Bragg grating with close characteristics [10612-29]
10612 07 Non-trivial structure of optical momentum and optical forces inherent in evanescent waves [10612-12]
10612 08 Characteristics of a field formed by superposition of two plane waves with different frequencies and different polarization [10612-44]
10612 09 On important precursor of singular optics (tutorial) [10612-33]
10612 0A Reconstruction accuracy of phase map optical field using different methods of singular optics [10612-80]
10612 0B Optimal spiral phase modulation in Gerchberg-Saxton algorithm for wavefront reconstruction and correction [10612-71]
10612 0C Phase problem in optics: new approaches and solutions [10612-81]
10612 0D Features of the photometry of the superposition of coherent vector electromagnetic waves [10612-65]
10612 0E Representation of solution for fully nonlocal diffusion equations with deviation time variable [10612-25]
Huygens-Fresnel principle and the spatial bandwidth of an optical system [10612-54]

Functional structure of devices and apparatus [10612-77]

OPTICAL CORRELATION DEVICES BASED ON DIFFRACTION OPTICAL ELEMENTS, OPTICAL SENSORS

Holographic interferometry imaging monitoring of photodynamic (PDT) reactions in gelatin biophantom [10612-88]

A direct-view customer-oriented digital holographic camera [10612-57]

Features of Talbot effect on phase diffraction grating [10612-52]

Heterojunction photodiode on cleaved SiC [10612-48]

Limit characteristics of digital optoelectronic processor [10612-1]

Review of digital holography reconstruction methods [10612-5]

Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures [10612-87]

OPTICAL CORRELATION DIAGNOSTICS, INTERFEROMETRY AND MICROSCOPY OF ROUGH SURFACES AD RANDOM MEDIA

Correlation methods in optical metrology with state-of-the-art x-ray mirrors (Invited Paper) [10612-86]

Optical properties of spin-coated SnS\textsubscript{2} thin films [10612-17]

Physical properties of the heterojunction MoO\textsubscript{x}/n-CdTe as a function of the parameters of CdTe crystals [10612-55]

Properties of the phonon spectra in the anisotropic wurtzite nanostructures [10612-6]

Energy spectrum of electron-phonon complex states in three-level system of localized quasi-particles at low temperatures [10612-8]

Laser controllable generation and manipulation of micro-bubbles in water [10612-31]

Application of dynamic light scattering for studying the evolution of micro- and nano-droplets [10612-84]

Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts [10612-60]

Temperature dependence of parameters of the 115In NQR spectrum in InSe crystal compound [10612-2]
NEW APPLICATIONS OF CORRELATION OPTICS IN BIOLOGY AND MEDICINE

10612 1B Applications of polarization speckle in skin cancer detection and monitoring (Invited Paper) [10612-82]

10612 1C Light scattering method to measure red blood cell aggregation during incubation (Invited Paper) [10612-83]

10612 1D New possibilities of complex "Thermodyn" application for contactless remote diagnostics in medical practice [10612-30]

10612 1E Spectropolarimetry in the differential diagnosis of benign and malignant ovarian tumors [10612-19]
10612 1F Jones-matrix tomography of biological tissues phase anisotropy in the diagnosis of uterus wall prolapse [10612-72]

10612 1G Polarization-interference Jones-matrix mapping of biological crystal networks [10612-74]

10612 1H Stokes-correlometry of polarization-inhomogeneous objects [10612-76]

10612 1I Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers [10612-66]

10612 1J Wavelet analysis of birefringence images of myocardium tissue [10612-67]

10612 1K Multiscale polarization diagnostics of birefringent networks in problems of necrotic changes diagnostics [10612-68]

10612 1L Complex polarimetric and spectral techniques in diagnostics of blood plasma of patients with ovarian cancer as a preliminary stage molecular genetic screening [10612-20]

10612 1M Polarization spectrometry diagnostic of cervical pathological states of endometriosis [10612-21]

10612 1N Mueller matrix mapping of biological polycrystalline layers using reference wave [10612-35]

10612 1O 3D Mueller-matrix mapping of biological optically anisotropic networks [10612-36]

10612 1P Method and system of Jones-matrix mapping of blood plasma films with “fuzzy” analysis in differentiation of breast pathology changes [10612-38]

10612 1Q Statistical analysis of polarization interference images of biological fluids polycrystalline films in the tasks of optical anisotropy weak changes differentiation [10612-78]

10612 1R Anizotropy characteristics of the left ventricle false chordae tendineae as one of varieties of myoendocardial formations of the human heart [10612-22]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Akhmerov, Aleksandr A., 03
Andrushchak, G. O., 0A
Angelska, A. O., 0A
Angelsky, O. V., 0T
Angelsky, P. O., 0C
Aoki, Toru, 0V
Arkhyelyuk, Alexander D., 0Y, 14
Bachynskiy, V. T., 1H
Baránek, M., 0B
Baranovsky, V., 1F
Baryła, J., 1C
Běhal, J., 0B
Bekshaev, Aleksandr Ya., 03, 0T
Belov, M. Ye., 1D
Besaga, Vira R., 0I
Besaha, R. N., 1K
Bodnar, G. B., 1H, 1I, 1O
Bodyanchuk, I., 06, 08
Bogatyryova, Halina V., 09
Borovtysky, V., 0F
Bouchal, Z., 0B
Brazhnikov, Denis G., 0J
Brus, Viktor V., 0K, 0P, 0Q, 0V, 10, 15, 1A
Burkovets, D. N., 1M, 1R
Centers, Gary, 0O
Chernykh, Aleksey V., 03
Chuprina, N., 0H
Danko, Oleksandr, 16
Danko, Volodymyr P., 0J, 16
Davidenko, I., 0H
Davidenko, I., 0H
Derevyanchuk, Oleksandr V., 0N, 19
Derkachov, G., 0U
Dervens, M., 0H
Dobrovolskyi, Yuriy G., 0Y
Douplik, A., 0H
Dovhaliluk, Rostyslav Yu., 0M
Drgěžek, D., 1C
Drin, I. I., 0E
Drin, S. S., 0E
Drin, Ya. M., 0E
Dubolazov, O. V., 1F, 1G, 1H, 1N, 1Q
Farah, John, OK
Felde, Christina V., 09
Galushko, Ye., 06, 0B
Galushko, Yu., 06
Gavyrija, Mykhailo S., 0Y, 1R
Gergely, C., 0H
Gerhardt, Nils C., 0I
Gevorkyan, Gevork S., 00
Glebov, L., 06
Gnałyuk, Volodymyr A., 0V
Gorsky, Mykhaylo P., 02, 17
Grula, I., 1E
Grzytskyi, M., 1I, 1N
Grzegorzewski, B., 1C, 1L
Hanson, Steen G., 02, 0T
Hofmann, Martín R., 0I
Hu, Xiaoying, 02
Ivanski, B. V., 13
Ivanskyi, D. I., 05, 07
Jakubczyk, D., 0U
Kalia, Sunil, 1B
Karas, Oleksandr V., 1P
Karia, H., 0H
Khalanzhko, Alexander, 0W
Khalanzhko, Victor, 0W
Kharoshun, Anna N., 03
Kolodrovod, M. S., 0L
Kolodrovod, V. G., 0L
Kolwas, K., 0U
Kondrnyuk, Denys V., 19
Konovchuk, Alexey V., 09
Kontush, S. M., 0T
Kotov, Mykhaylo M., 0J
Koval, G., 1O
Kovalenko, Andriy V., 0J, 16
Kovaljuk, Taras T., 0K, 10
Koziarski, Dmytro P., 12, 15, 18
Koziarski, Ivan P., 10, 12, 15, 18
Kramar, Natalia K., 0N
Kramar, Valeriy M., 0N, 19, 1D
Kryvetskyi, V. I., 13
Kshevetskyi, Oleg S., 0X
Kuranda, N., 0H
Kushnerik, L., 1J
Lacey, Ian, 0O
Lastivka, Galina, 0W
Lee, Tim K., 1B
Louie, Daniel C., 1B
Lul, Harvey, 1B
Lukashevich, I., 1O
Mahdi, H., 0H
Maistruk, Eduard V., 0K, 0P, 0V, 12, 15, 18
Makhrova, Ye. G., 1D
Maksimyak, A. P., 05, 0T
Maksymyak, Peter P., 05, 0I, 0T, 0Z, 17
Mailyk, Yu. Yu., 1R
Conference Committee

Conference Chairs

Oleg V. Angelsky, Yuriy Fedkovych Chernivtsi National University (Ukraine)

Program Committee

Oleg V. Angelsky, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Miguel A. Alonso, The Institute of Optics, University of Rochester (United States)
Pierre Ambs, Université de Haute-Alsace (France)
Toru Aoki, Shizuoka University (Japan)
Michael Berry, University of Bristol (United Kingdom)
Konstantin Bliokh, Center for Emergent Matter Science, RIKEN (Japan)
Etienne Brasselet, Université de Bordeaux (France)
Maria Calvo, Universidad Complutense de Madrid (Spain)
Pierre Chavel, Institut d’Optique, CNRS (France)
Johannes Courtial, University of Glasgow (United Kingdom)
Mark Dennis, University of Bristol (United Kingdom)
Anton Desyatnikov, Nazarbayev University (Kazakhstan), Australian National University (Australia)
Alain Dieterlen, Université de Haute-Alsace (France)
Yeshaiahu Fainman, University of California (United States)
Albert Ferrando, Universitat de València (Spain)
Ari Friberg, University of Eastern Finland (Finland)
Jacek Galas, Institute of Applied Optics (Poland)
Enrique J. Galvez, Colgate University (United States)
Greg Gbur, University of North Carolina (United States)
Steen G. Hanson, Danmarks Tekniske Universitet (Denmark)
Iulian Ionita, University of Bucharest (Romania)
Ebrahim Karimi, University of Ottawa (Canada)
Yuri Kivshar, Australian National University (Australia)
Malgorzata Kujawinska, Warsaw University of Technology (Poland)
Tim Lee, University of British Columbia, Vancouver Coastal Health Research Institute, BC Cancer Agency, and Simon Fraser University (Canada)
Radu Malureanu, Danmarks Tekniske Universitet (Denmark)
Jan Masajada, Wrocław University of Technology (Poland)
Igor Meglinski, University of Oulu (Finland)
Hidenori Mimura, Shizuoka University (Japan)
Michael Mishchenko, The University of Utah (United States)
Yoko Miyamoto, University of Electro-Communications (Japan)
Germano Montemezzani, Université de Metz (France)
Takanori Nomura, Wakayama University (Japan)
Tatiana Novikova, LPICM, CNRS, Université Paris-Saclay (France)
Sergey G. Odoulov, Institute of Physics, National Academy of Sciences of Ukraine (Ukraine)
Takashige Omatsu, Chiba University (Japan)
Wolfgang Osten, Universität Stuttgart (Germany)
Krzysztof Patorski, Warsaw Technical University (Poland)
Adrian Petris, Universitatea din Bucharest (Romania)
Anatoly O. Pinchuk, University of Colorado Colorado Springs (United States)
Viktor Podolskiy, University of Massachusetts Lowell (United States)
Peter Polyanski, Yuri Fedkovych Chernivtsi National University (Ukraine)
Sergey Ponomarenko, Nonlinear Optics Dalhousie University (Canada)
Aurelian Rotaru, Stefan cel Mare University of Suceava (Romania)
David Sampson, University of Western Australia (Australia)
Herbert Schneckenburger, Hochschule Aalen (Germany)
Marat S. Soskin, Institute of Physics (Ukraine)
Grover Swartzlander, Rochester Institute of Technology (United States)
Tomasz Szoplik, University of Warsaw (Poland)
Tiberiu Tudor, Universtatea din Bucharest (Romania)
Aurelijus Valčukovičius, Vilnius University (Lithuania)
Taco D. Visser, Vrije University Amsterdam (Netherlands)
Nirmal Viswanathan, National Institute of Technology, Warangal (India)
Wei Wang, Heriot-Watt University (United Kingdom)
Qiang Wu, City University Hong Kong (China)
James C. Wyant, The University of Arizona (United States)
Anna N. Yaroslavsky, University of Massachusetts (United States)
Valeriy Yashchuk, Lawrence Berkeley National Laboratory (United States)
Xinzheng Zhang, Nankai University (China)
Dmitry Zimnyakov, Yuri Gagarin State Technical University of Saratov (Russian Federation)

Organizing Committee

Roman M. Besaha, Yuri Fedkovych Chernivtsi National University (Ukraine)
Alexander V. Dubolazov, Yuri Fedkovych Chernivtsi National University (Ukraine)
O. Ushenko, Yuri Fedkovych Chernivtsi National University (Ukraine)
V. Godovanyuk, Central Design Office (Ukraine)
I. Mysevych, ARTON (Ukraine)
Ya. Struk, Yuriy Fedkovych Chernivtsi National University (Ukraine)
P. Maksimyak, Yuriy Fedkovych Chernivtsi National University (Ukraine)
V. Kramar, Yuriy Fedkovych Chernivtsi National University (Ukraine)
S. Yermolenko, Yuriy Fedkovych Chernivtsi National University (Ukraine)
C. Zenkova, Yuriy Fedkovych Chernivtsi National University (Ukraine)
I. Soltys, Yuriy Fedkovych Chernivtsi National University (Ukraine)
D. Burkovets, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Yu. Ushenko, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Ch. Felde, Yuriy Fedkovych Chernivtsi National University (Ukraine)
N. Horodynska, Yuriy Fedkovych Chernivtsi National University (Ukraine)
P. Riabyi, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Yu. Viktorovskaya, Yuriy Fedkovych Chernivtsi National University (Ukraine)
M. Gavrylyak, Yuriy Fedkovych Chernivtsi National University (Ukraine)
A. Arkhelyuk, Yuriy Fedkovych Chernivtsi National University (Ukraine)
M. Dominikov, Yuriy Fedkovych Chernivtsi National University (Ukraine)
M. Gorsky, Yuriy Fedkovych Chernivtsi National University (Ukraine)
A. Motrich, Yuriy Fedkovych Chernivtsi National University (Ukraine)
I. Pidkamin, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Yu. Galushko, Yuriy Fedkovych Chernivtsi National University (Ukraine)
A. Nehrych, Yuriy Fedkovych Chernivtsi National University (Ukraine)
B. Tymochko, Yuriy Fedkovych Chernivtsi National University (Ukraine)
O. Konovchuk, Yuriy Fedkovych Chernivtsi National University (Ukraine)
M. Strinadko, Yuriy Fedkovych Chernivtsi National University (Ukraine)
T. Venkel, Yuriy Fedkovych Chernivtsi National University (Ukraine)
V. Martyniuk, Yuriy Fedkovych Chernivtsi National University (Ukraine)

Session Chairs

Plenary Session 1
Oleg V. Angelsky, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Tomasz Szoplik, University of Warsaw (Poland)

Plenary Session 2
Yeshaiahu Fainman, University of California (United States)
Konstantin Bliokh, Center for Emergent Matter Science, RIKEN (Japan)
1 Informative content of statistical optical fields, including singular optics, partial coherence and polarization
David Sampson, University of Western Australia (Australia)
Alexander Bekshaev, Odessa I.I. Mechnikov National University (Ukraine)

2 Optical correlation devices based on diffraction optical elements, optical sensors
Albert Ferrando, Universitat de València (Spain)
Radu Malureanu, Danmarks Tekniske Universitet (Denmark)

3 Optical correlation diagnostics, interferometry and microscopy of rough surfaces and random media
Miguel A. Alonso, The Institute of Optics, University of Rochester (United States)
Valeriy Yashchuk, Lawrence Berkeley National Laboratory (United States)

4 New applications of correlation optics in biology and medicine
Olexander Ushenko, Yuriy Fedkovych Chernivtsi National University (Ukraine)
Igor Meglinski, University of Oulu (Finland)
Introduction

The Thirteenth International Conference on Correlation Optics continues the series of conferences with the same title held biannually at Chernivtsi National University (Ukraine) since 1993. More than 120 participants from 21 countries attended the conference, and more than 140 talks were presented. This volume includes oral and poster contributions on the following topics:

- Informative content of statistical optical fields, including singular optics, partial coherence and polarization
- Optical correlation devices based on diffraction optical elements, optical sensors
- Optical correlation diagnostics, interferometry and microscopy of rough surfaces and random media; Advanced materials, nanomaterials and devices for optics and optoelectronics
- New applications of correlation optics in biology and medicine

I am grateful to all participants of the conference, as well as to the members of the International Program Committee whose work provided high scientific value and organization of the conference.

Oleg V. Angelsky