Novel In-Plane Semiconductor Lasers XVII

Alexey A. Belyanin
Peter M. Smowton

Editors

29 January – 1 February 2018
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10553
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committee</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLENARY SESSION

10553 02 III-nitride nanowire LEDs and diode lasers: monolithic light sources on (001) Si emitting in the 600-1300nm range (Plenary Paper) [10553-202]

DEVELOPING LASER MATERIALS

10553 07 Laser diodes using InAlGaAs multiple quantum wells intermixed to varying extent [10553-56]

NITRIDES/VISIBLE EMITTING LASERS

10553 08 Defect evolution during catastrophic optical damage in 450nm emitting InGaN/GaN diode lasers (Invited Paper) [10553-5]

10553 0A 10th order laterally coupled GaN-based DFB laser diodes with v-shaped surface gratings (Invited Paper) [10553-7]

ANTIMONIDE-BASED MID-IR LASERS

10553 0C New GasB based single mode diode lasers in the NIR and MIR spectral regime for sensor applications [10553-9]

10553 0E Magneto-optical properties of potassium terbium fluoride [10553-11]

QUANTUM DOT LASERS

10553 0G Incorporating structural analysis in a quantum dot Monte-Carlo model [10553-13]

10553 0J Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers [10553-16]

TEMPORAL EFFECTS AND MODE LOCKED LASERS

10553 0K Pico- and nanosecond investigations of the lateral nearfield of broad area lasers under pulsed high-current excitation [10553-17]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0L</td>
<td>Spontaneous generation of frequency combs in QD lasers</td>
<td>[10553-18]</td>
</tr>
<tr>
<td>0M</td>
<td>Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm</td>
<td>[10553-19]</td>
</tr>
<tr>
<td>0N</td>
<td>Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser</td>
<td>[10553-20]</td>
</tr>
<tr>
<td>0O</td>
<td>High pulse energy stabilized passively mode-locked external cavity inverse bow-tie 980nm laser diode for space applications</td>
<td>[10553-21]</td>
</tr>
</tbody>
</table>

MID-IR QCLS AND ICLS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0P</td>
<td>Continuous wave power scaling in high power broad area quantum cascade lasers</td>
<td>[10553-22]</td>
</tr>
<tr>
<td>0Q</td>
<td>3.35μm distributed feedback interband cascade lasers with top grating</td>
<td>[10553-23]</td>
</tr>
</tbody>
</table>

PHOTONIC BANDGAP AND CAVITY EFFECTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers</td>
<td>[10553-33]</td>
</tr>
</tbody>
</table>

COMBS AND MODE LOCKING

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers</td>
<td>[10553-42]</td>
</tr>
</tbody>
</table>

HIGH POWER/BRIGHTNESS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>Diffraction limited 1064nm monolithic DBR-master oscillator power amplifier with more than 7W output power</td>
<td>[10553-45]</td>
</tr>
<tr>
<td>1D</td>
<td>Comparison of distributed Bragg reflector ridge waveguide diode lasers and monolithic master oscillator power amplifiers</td>
<td>[10553-46]</td>
</tr>
<tr>
<td>1F</td>
<td>5.5nm wavelength tunable high power MOPA diode laser system at 971nm</td>
<td>[10553-48]</td>
</tr>
<tr>
<td>1G</td>
<td>Comparison for 1030nm DBR tapered diode lasers with 10W central lobe output power and different grating layouts for wavelength stabilization and lateral spatial mode filtering</td>
<td>[10553-49]</td>
</tr>
</tbody>
</table>

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
10553 1L Angled facet waveguide quantum cascade laser for external cavity system [10553-54]
10553 1M Stability of the mode-locking regime in tapered quantum-dot lasers [10553-55]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Alahmadi, Yousef, 07
Allouh, M. Ali, 0N
Babazadeh, N., 0G
Bardella, Paolo, 0L, 1M
Belenky, Gregory, 19
Bhattacharya, P., 02
Boiko, D. L., 0C
Brenner, Carsten, 0N
Breuer, S., 1M
Brox, O., 10
Bugge, Frank, 0M, 1D, 1G
Butler, I. M. E., 0G
Childs, D. T. D., 0G
Columbo, Lorenzo Luigi, 0L
Della Casa, Pietro, 10, 1F
Dzewiecki, L., 1M
Duan, J., 0J
Einfeldt, S., 0A
Erbert, Götz, 1C, 1G
Feise, David, 1D, 1F
Feng, Tao, 19
Figueiredo, P., 0P
Foundos, Greg, 0E
Freier, E., 0A
Fricke, Jörg, 0K, 0M, 1C, 1F, 1G
Garcia, M., 0O
Gerard, B., 0O
Gerke, Sebastian, 1D
Ginolas, Armin, 1F
Gioannini, Mariangela, 0L
Go, R., 0P
Grillot, F., 0J
Hazar, A., 02
Hoffmann, V., 0A
Hoffmann, Martin R., 0N
Hogg, R. A, 0G
Honsberg, Martin, 0C
Hoppe, Morten, 0C
Hosoda, Takashi, 19
Huang, H., 0J
Jahangir, S., 02
Kang, J. H., 0A
Kernke, Robert, 0B
Kipshidze, Gela, 19
Klehr, Andreas, 0K, 0M, 0N
Kneissl, M., 0A
Knigge, Andrea, 0K, 0M, 0N, 10
König, Harald, 0B
Krakowski, M., 0O
Kundermann, S., 0O
Lascola, Kevin, 0Q
Lecomte, M., 0O
Lell, Alfred, 08
Leshin, J., 0P
Li, Wei, 0G
Liero, A., 0K
LiKamWa, Patrick, 07
Löffler, Andreas, 08
Lyakh, A., 0P
Maßdorf, André, 1C
Maiwald, Martin, 1C
Masselinck, W. Ted, 1L
Mathonnière, Sylvain, 1L
Matsuoka, Yohji, 1L
Milde, Tobias, 0C
Mordmüller, Mario, 0C
Müller, André, 1F, 1G
Nishi, K., 0G
O’Gorman, James, 0C
Parillaud, O., 0O
Paszke, Katrin, 1D
Peyvast, Negin, 0G
Pham, John, 0Q
Picin, Rouven H., 0N
Poole, P. J., 0J
Pziwarka, T., 0M
Resneau, P., 0O
Ressel, Peter, 1C, 1F
Robert, Y., 0O
Ross, I. M., 0G
Rossetti, M., 1M
Sacher, Joachim, 0C
Schade, Wolfgang, 0C
Schires, K., 0J
Semtsiv, Mykhaylo P., 1L
Shen, Kun, 0Q
Shiferengas, Leon, 19
Shu, H., 0P
Sobhani, S. A., 0G
Staske, R., 0K
Stevens, Kevin T., 0E
Stock, Michael, 0Q
Stojetz, Bernhard, 0B
Sugawara, M., 0G
Sulmoni, L., 0A
Sumpf, Bernd, 10, 1C, 1F, 1G
Suttinger, M., 0P
Takemasa, K., 0G

vii
Conference Committee

Symposium Chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Centre, University of Southampton (United Kingdom)

Symposium Co-Chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Program Track Chair

Klaus P. Streubel, OSRAM AG (Germany)

Conference Chairs

Alexey A. Belyanin, Texas A&M University (United States)
Peter M. Smowton, Cardiff University (United Kingdom)

Conference Program Committee

Yasuhiko Arakawa, The University of Tokyo (Japan)
Mikhail A. Belkin, The University of Texas at Austin (United States)
Dan Botez, University of Wisconsin-Madison (United States)
Federico Capasso, Harvard School of Engineering and Applied Sciences (United States)
Gary A. Evans, Southern Methodist University (United States)
Michael Kneissl, Technische Universität Berlin (Germany)
Luke F. Lesler, Virginia Polytechnic Institute and State University (United States)
Shinji Matsuo, NTT Photonics Laboratories (Japan)
Luke J. Mawst, University of Wisconsin-Madison (United States)
Jerry R. Meyer, U.S. Naval Research Laboratory (United States)
Roberto Paiella, Boston University (United States)
Richard V. Penty, University of Cambridge (United Kingdom)
Johann Peter Reithmaier, Universität Kassel (Germany)
Haisheng Rong, Intel Corporation (United States)
Gary M. Smith, MIT Lincoln Laboratory (United States)
Nelson Tansu, Lehigh University (United States)
Miriam Serena Vitiello, Consiglio Nazionale delle Ricerche (Italy)
Qi Jie Wang, Nanyang Technological University (Singapore)

Session Chairs

1. Developing Laser Materials
 Luke J. Mawst, University of Wisconsin-Madison (United States)

2. Nitrides/Visible Emitting Lasers
 Michael Kneissl, Technische Universität Berlin (Germany)

3. Antimonide-based Mid-IR Lasers
 Leon Shterengas, Stony Brook University (United States)

4. Quantum Dot Lasers
 Peter M. Smowton, Cardiff University (United Kingdom)

5. Temporal Effects and Mode Locked Lasers
 Johann Peter Reithmaier, Universität Kassel (Germany)

6. Mid-IR QCLs and ICLs
 Gerard Wysocki, Princeton University (United States)

7. QCLs for Spectroscopy
 Feng Xie, Thorlabs Quantum Electronics (United States)

8. Photonic Bandgap and Cavity Effects
 Alexey A. Belyanin, Texas A&M University (United States)

9. QCL Frequency Combs
 Sukhdeep Dhillon, Laboratoire Pierre Aigrain (France)

10. Combs and Ultrafast Modulation
 Marco Piccardo, Harvard John A. Paulson School of Engineering and Applied Sciences (United States)

11. Combs and Mode Locking
 Karl Unterrainer, Technische Universität Wien (Austria)

12. High Power/Brightness
 Gary M. Smith, MIT Lincoln Laboratory (United States)

13. THz QCLs
 Maria Catrina Giordano, CNR-NANO (Italy)