The papers in this volume were part of the technical conference cited on the cover and title page.
Papers were selected and subject to review by the editors and conference program committee.
Some conference presentations may not be available for publication. Additional papers and
presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The
publisher is not responsible for the validity of the information or for any outcomes resulting from
reliance thereon.

Please use the following format to cite material from these proceedings:
  Author(s), "Title of Paper," in Radar Sensor Technology XXII, edited by Kenneth I. Ranney, Armin

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510617773

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of
specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by
SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this
volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright
Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made
electronically through CCC Online at copyright.com. Other copying for republication, resale,
advertising or promotion, or any form of systematic or multiple reproduction of any material in this
book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-
786X/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL
LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation
identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs
allows articles to be fully citable as soon as they are published online, and connects the same
identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article
numbering system structured as follows:
• The first five digits correspond to the SPIE volume number.
• The last two digits indicate publication order within the volume using a Base 36 numbering
system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04,
05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each
page of the manuscript.
## Contents

vii  Authors  
ix Conference Committee  

### ALGORITHMS AND PROCESSING I

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10633 02</td>
<td>3D tomography for multistatic GPR subsurface sensing [10633-1]</td>
</tr>
<tr>
<td>10633 03</td>
<td>3D radar imaging using interferometric ISAR [10633-2]</td>
</tr>
<tr>
<td>10633 04</td>
<td>Application and performance of convolutional neural networks to SAR [10633-3]</td>
</tr>
<tr>
<td>10633 05</td>
<td>Pre-conditioning phase history data for video-SAR autofocus [10633-4]</td>
</tr>
<tr>
<td>10633 06</td>
<td>High-resolution range profiling via weighted SPICE in stepped-frequency radar [10633-5]</td>
</tr>
<tr>
<td>10633 07</td>
<td>Aerostat borne ISAR autofocus imaging based on phase retrieval [10633-6]</td>
</tr>
</tbody>
</table>

### ALGORITHMS AND PROCESSING II

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10633 08</td>
<td>Data quality analysis and enhancement of an airborne weather radar for scientific and multi-mission operations [10633-7]</td>
</tr>
<tr>
<td>10633 09</td>
<td>Multi-hypothesis post-processing for improving air-to-air radar tracking accuracy [10633-8]</td>
</tr>
<tr>
<td>10633 0A</td>
<td>Particle swarm optimization for radar binary phase code selection [10633-9]</td>
</tr>
</tbody>
</table>

### ALGORITHMS AND PROCESSING III

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10633 0C</td>
<td>Energy allocation for tailored waveform design using the Taguchi method for clutter suppression and enhanced detection of targets [10633-11]</td>
</tr>
<tr>
<td>10633 0D</td>
<td>RFI mitigation for UWB radar via SPICE [10633-12]</td>
</tr>
<tr>
<td>10633 0E</td>
<td>Signal processing technique for spectrally RF congested and restricted environments using the U.S. Army Research Laboratory stepped-frequency ultra-wideband radar [10633-13]</td>
</tr>
</tbody>
</table>
Information elasticity in pseudorandom code pulse compression [10633-14]

Information elasticity in ultra-wideband target detection amongst distributed clutter [10633-15]

MICRO-DOPPLER EXPLOITATION

Application of the operator current to polarization radar and three-dimensional rotations [10633-16]

Coherent 24 GHz FMCW radar system for micro-Doppler studies [10633-17]

Data-driven cepstral and neural learning of features for robust micro-Doppler classification [10633-18]

PROGRAMS AND SYSTEMS I

Optimized radar design parameters for synthetic aperture radar with limited swath [10633-19]

Imaging of satellites in space (IoSIS): challenges in image processing of ground-based high-resolution ISAR data [10633-20]

Examination of radar imagery from recent data collections using the spectrally agile frequency-incrementing reconfigurable (SAFIRE) radar system [10633-22]

Implementation and enhancement of Hilbert transform-based calibration in a K band FMCW radar for high-resolution security applications [10633-23]

Ship-relative instant multispectral positioning system [10633-24]

PROGRAMS AND SYSTEMS II

Detection of radio-frequency electronics by acoustic modulation of radar waves [10633-31]

Software-defined radios for the implementation of randomized arrays [10633-33]

ALGORITHMS AND PROCESSING IV

A thorough analysis of various geometries for a dynamic calibration target for through-wall and through-rubble radar [10633-34]

Characterization of wall structures with microwaves [10633-35]
Imaging radar performance analysis using product dark regions [10633-36]

The Aharonov Ansatz as a means for realizing Woodward's synthesis principle for metamaterial designs [10633-37]

Tunable Vivaldi antenna design for frequency scanning [10633-38]

NOISE RADAR

Analysis of transmission and polarization optimization of counter-small UAS (C-SUAS) radar and jamming [10633-39]

Microwave imaging using ultra-wideband noise waveforms for nondestructive testing of multilayer structures [10633-40]

Ultra-wideband direction-of-arrival considerations for antenna arrays in the presence of mutual coupling [10633-41]

QUANTUM ASPECTS OF RADAR SENSING

Combining multi-photon entanglement, hyper-entanglement, and quantum networks for enhanced sensing [10633-42]

NONLINEAR AND COGNITIVE RADAR

Cognitive radar utilizing multifunctional reconfigurable antennas [10633-47]

Predictive energy detection for inferring radio frequency activity [10633-48]

POSTER SESSION

Radar Doppler processing with nonuniform PRF [10633-49]

Measuring channel balance in multi-channel radar receivers [10633-50]

Clutter mitigation scheme in presence of wind-blown foliage for FMCW radar [10633-51]

Investigating the application of deep learning for electromagnetic simulation prediction [10633-52]
UWB 3D near-field imaging with a sparse MIMO antenna array for concealed weapon detection [10633-55]

Software-defined radar: recent experiments and results [10633-56]

Wideband directions of arrival estimation of chirp sources using compressive sensing [10633-57]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Addison, Stephen R., 0H
Al Ikhlas, Lucy Ali, 1F
Alatan, Lale, 1D
Alexander, David B., 15
Alkhazraj, E., 12
Amin, Moeness, 0J
Andol, Erman, 1D
Anderson, John M. M., 06
Angher, S., 0L
Askar, Nael, 09
Aybin Civi, Ozlem, 1D
Bickel, Douglas L., 10, 1A
Bishop, Edward, 05
Blake, William, 0B
Blount, Clay B., 1C
Burns, Dylan, 02
Camlica, Sedat, 1D
Celiner, Bedri, 17
Cook, Jason D., 03
Culitta, Roger, 0X, 1E
Dellosa, M., 00
Dickinson, Jason C., 03
Dietlein, Charles, 0X, 1E
Dill, S., 0L, 02
Doery, A. W., 19, 1A
Dogaru, Traian V., 0K
Dyer, John, 13
Erol, Baris, 0J
Fox, Maxine R., 04
Freeman, Stephen, 0X, 1E
Galanos, Daniel, 0X, 1E
Gallagher, Kyle A., 0V, 0X, 18, 1E
Gatesman, Andrew J., 03
Gedlin, Kahlil, 11
Goyette, Thomas M., 03
Gray, John E., 0H, 11
Gurbuz, Ali Cafer, 17
Gurbuz, Sevghi Zubeide, 0J, 17
Haas, A., 02
Harner, Michael J., 0Y
Hedden, Abigail, 0X, 1E
Himed, Braham, 15
Huang, Yi-Hu, 13
Huston, Dryver, 02
Idriss, Zacharie, 0C
Ishaq, Z., 12
Jendzurski, John R., 0Y
Jirousek, M., 0L
Johnston, Jeremy, 0D
Judy, Matthew R., 0V
Kelly, Colin D., 0K
Khan, M. T. A., 12
Kirk, Ben, 0X, 1E
Koc, Sencer, 1D
Kovarskiy, Jacob A., 18
Lam, Eric P., 1E
Li, Bingcheng, 0A
Li, Jian, 06, 0D
Linnehan, Robert, 05
Liu, Andrew Z., 0F
Liu, Guoqing, 09
Ly, Canh, 0M
Maasood, B., 12
Martone, Anthony F., 18
Mazzaro, Gregory J., 0V
McCormick, K., 00
McNamara, David, 0X
Menon, Arif, 0N
Mumcu, Gokhan, 0N
Narayanan, Ram M., 04, 0C, 0F, 0G, 0K, 0M, 0X, 0Y, 14, 15, 18, 1E
Navagato, Marc D., 14
Nepal, Ramesh, 08
Nguyen, Lam H., 06, 0D, 0E
Nixon, William E., 03
Oktm, Figen, 1D
Orfeo, Dan, 02
Paufler, Nicholas G., 0Y
Peichl, M., 0L, 02
Pereira, Mauricio, 02
Phelan, Brian R., 0K, 0M
Price, Corey P., 1C
Price, Stanton R., 1C
Price, Steven R., 1C
Qiao, Zhijun G., 07
Rahman, Saimur, 01
Rangaswamy, Muralidhar, 0F, 0G
Ranney, Kenneth L., 0M, 0X, 1E
Raynal, Ann Marie, 10
Ren, Jiaying, 06, 0D
Robertson, Duncan A., 0I
Ryzhkov, Alexader, 0B
Saponaro, Philip J., 0M
Schreiber, E., 0L
Seker, Ilgin, 1D
Seyfioglu, Mehmet Saygin, 0J
Shahid, H., 12
Shaw, Arnab K., 1F
Conference Committee

Symposium Chairs
Arthur A. Morrish, Raytheon Space and Airborne Systems (United States)
Ruth L. Moser, Air Force Research Laboratory (United States)

Conference Chairs
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin Doerry, Sandia National Laboratories (United States)

Conference Program Committee
Fauzia Ahmad, Temple University (United States)
Moeness G. Amin, Villanova University (United States)
Joseph C. Deroba, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)
Mark Govoni, U.S. Army Research Laboratory (United States)
John E. Gray, Naval Surface Warfare Center Dahlgren Division (United States)
Majeed Hayat, The University of New Mexico (United States)
Chandra Kambhamettu, University of Delaware (United States)
Seong-Hwoon Kim, Raytheon Space & Airborne Systems (United States)
Marco O. Lanzagorta, U.S. Naval Research Laboratory (United States)
Changzhi Li, Texas Tech University (United States)
Jenshan Lin, University of Florida (United States)
Robert Linnehan, General Atomics Aeronautical Systems, Inc. (United States)
Ronald D. Lipps, U.S. Naval Research Laboratory (United States)
David G. Long, Brigham Young University (United States)
Neeraj Magotra, Western New England University (United States)
Anthony F. Martone, U.S. Army Research Laboratory (United States)
Gregory J. Mazzaro, The Citadel-The Military College of South Carolina (United States)
George J. Moussally, Mirage Systems (United States)
Ram M. Narayan, The Pennsylvania State University (United States)
Marius Necsoiu, Southwest Research Institute (United States)
Lam H. Nguyen, U.S. Army Research Laboratory (United States)
Hector A. Ochoa, The University of Texas at Tyler (United States)
Thomas Pizzillo, U.S. Naval Research Laboratory (United States)
Zhijun G. Qiao, The University of Texas-Pan American (United States)
Ann Marie Raynal, Sandia National Laboratories (United States)
Jerry Silvious, U.S. Army Research Laboratory (United States)
David Tahmoush, U.S. Naval Research Laboratory (United States)
Russell Vela, Air Force Research Laboratory (United States)
Frank Yakos, Consultant (United States)
Yan Zhang, The University of Oklahoma (United States)
Ruolin Zhou, Western New England University (United States)

Session Chairs

2 Opening Remarks
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin W. Doerry, Sandia National Laboratories (United States)

1 Algorithms and Processing I
Gregory J. Mazzaro, The Citadel-The Military College of South Carolina (United States)

2 Algorithms and Processing II
Lam H. Nguyen, U.S. Army Research Laboratory (United States)

3 Algorithms and Processing III
Ann Marie Raynal, Sandia National Laboratories (United States)

4 Micro-Doppler Exploitation
David Tahmoush, U.S. Naval Research Laboratory (United States)

5 Programs and Systems I
Seong-Hwoon Kim, Raytheon Space and Airborne Systems (United States)

6 Single-scan Target Tracking: Keynote Session
John E. Gray, Naval Surface Warfare Center Dahlgren Division (United States)

7 Profiles in Industry I
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin Doerry, Sandia National Laboratories (United States)

8 Profiles in Industry II
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin Doerry, Sandia National Laboratories (United States)

9 Programs and Systems II
Russell Vela, Air Force Research Laboratory (United States)
10 Algorithms and Processing IV
   Yan Zhang, The University of Oklahoma (United States)

11 Noise Radar
   Ram M. Narayanan, The Pennsylvania State University (United States)
   Yan Zhang, The University of Oklahoma (United States)

12 Quantum Aspects of Radar Sensing
   Marco O. Lanzagorta, U.S. Naval Research Laboratory (United States)

13 Nonlinear and Cognitive Radar
   Kyle A. Gallagher, U.S. Army Research Laboratory (United States)