Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything

Michael C. Dudzik
Jennifer C. Ricklin
Editors

16–18 April 2018
Orlando, Florida, United States

Sponsored and Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>CYBER AND SOFTWARE SECURITY FOR AUTONOMOUS OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10643 03</td>
<td>Safety enforcement for the verification of autonomous systems [10643-2]</td>
</tr>
<tr>
<td>10643 05</td>
<td>Adopting cyber security practices in Internet of Things: a review [10643-5]</td>
</tr>
<tr>
<td>10643 06</td>
<td>Maintaining trusted platform in a cyber-contested environment [10643-6]</td>
</tr>
<tr>
<td>10643 07</td>
<td>Certificates, code signing and digital signatures [10643-7]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>OBJECT SENSING FOR DETECTION, CLASSIFICATION, AND AUTONOMOUS OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10643 08</td>
<td>CNN-based thermal infrared person detection by domain adaptation [10643-8]</td>
</tr>
<tr>
<td>10643 09</td>
<td>Evaluation of a logarithmic HDR sensor for an image-based navigation system [10643-9]</td>
</tr>
<tr>
<td>10643 0A</td>
<td>Improved video change detection for UAVs [10643-11]</td>
</tr>
<tr>
<td>10643 0B</td>
<td>Unattended sensor using deep machine learning techniques for rapid response applications [10643-12]</td>
</tr>
<tr>
<td>10643 0D</td>
<td>Hydra: a modular, universal multi-sensor data collection system [10643-14]</td>
</tr>
<tr>
<td>10643 0E</td>
<td>Low-cost 3D security camera [10643-15]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>NETWORKS AND THE IOT FOR AUTONOMOUS SYSTEMS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10643 0G</td>
<td>A history and overview of mobility modeling for autonomous unmanned ground vehicles [10643-17]</td>
</tr>
</tbody>
</table>
SESSION 4 NETWORKS AND THE IOT OF AUTONOMOUS SYSTEMS II

10643 0J Acoustic data communication by wireless sensor network on plate-like structures for autonomous structural health monitoring of aerovehicles [10643-20]

SESSION 5 AUTONOMOUS OPERATIONS, ARTIFICIAL INTELLIGENCE, AND NAVIGATION I

10643 0L Adapted deep feature fusion for person re-identification in aerial images [10643-22]
10643 0M UAVs for wildland fires [10643-23]
10643 0N Probabilistic models for assured position, navigation, and timing [10643-24]
10643 0P A robust abnormal detection method for complex structures in UAV images for autonomous O and M system [10643-27]
10643 0Q Genetic algorithm for automatic tuning of neural network hyperparameters [10643-28]

SESSION 6 AUTONOMOUS OPERATIONS, ARTIFICIAL INTELLIGENCE, AND NAVIGATION II

10643 0S Robust hierarchical reasoning over sensor data with the Soar cognitive architecture [10643-30]
10643 0T Optimizing cooperative cognitive search and rescue UAVs [10643-31]

SESSION 7 AUTONOMOUS OPERATIONS, ARTIFICIAL INTELLIGENCE, AND NAVIGATION III

10643 0U Power line-free conflict detection and 3D mapping using aerial images taken from UAV [10643-32]
10643 0W Survivability: a hierarchical fuzzy logic layered model for threat management of unmanned ground vehicles [10643-34]

POSTER SESSION

10643 0Y 1.5mm precision liquid level measurement using impedance spectroscopy [10643-36]
10643 10 The float round-off error analysis for linear minimum variance adaptive beamforming [10643-38]
10643 11 The subarray division for the phase array radar [10643-39]
Multi-objective optimization for subarray structure of the phase array radar

Adaptive monopulse for direction of arrival estimation under mainlobe interference

Advanced spatial spectrum estimation at subarray level for phase array radar

It's a target-rich environment in the IoT

Technical trade-offs of IoT platforms

Networking 20 billion devices

Cloud versus fog: which model is more secure for the IoT?

IOT honeynet for military deception and indications and warnings

The performance analysis for the subspace projection adaptive method under different subarray structures
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Akhloufi, Moulay A., 0M
Anderson, Derek T., 0D, 0G
Anderson, Michael E., 07, 15, 16, 17, 18
Andersson, Bjorn, 03
Ball, John E., 0D
Bethel, Cindy L., 0D, 0G
Beyerer, Jürgen, 08
Bock, Robert D., 0E
Britton, Matthew T., 06
Cagle, Lucas, 0D
Carruth, Daniel W., 0G
Castro, Nicolás A., 0M
Chester, David, 0T
Chriasson, Basil, 0T
Couturier, Andy, 0M
Crossman, Jacob, 0S
Dabak, Anand, 0Y
Davis, Madelyn, 0D
de Niz, Dionisio, 03
Durst, Phillip J., 0G
Fepeussi, Tonmo V., 0J
Frantz, Bruce W., 06
Gafford, James R., 0D
Gardner, David, 0D
Grecos, Christos, 05
Gresak, Erik, 0Q
Hadcock, David H., 06
Hanson, Peter J., 1A
Herrmann, Christian, 08
Hudson, Christopher, 0D
Hunt, Jodie, 0T
Huo, Feng, 0J
Islam, Muhammad Aminul, 0D
Jalowiczor, Jakub, 0Q
Jin, Yuanwei, 0J
Kamthan, Shashank, 0W
Kashyap, Bhuwan, 0Y
Kochersberger, Kevin, 0B
Kumar, Rathnesh, 0Y
LeClair, Andrew, 0D
Liu, Yucheng, 0D
Lynch, Michael J., 06
Maheshwary, Priti, 05
Malche, Timothy, 0S
Mayalu, Alfred K., 0B
Meitzler, Thomas, 0W
Metzler, Jürgen, 0L
Molina-Markham, Andres D., 0N
Monnin, David, 09
Monroe, Gabe, 0G
Moreno, Gabriel, 03
Morgan, Courtney, 0D
Müller, Thomas, 0A
Pietrzak, Mateusz, 09
Rahmes, Mark, 0T
Ramawamy, Srinath, 0Y
Ren, Sanko, 0U
Rozhon, Jan, 0Q
Ruf, Miriam, 0B
Safarik, Jakub, 0Q
Saranchak, David D., 1A
Sauber, Timothy, 0S
Schumann, Arne, 0L
Sestok, Charles, 0Y
Shefl, Bostic, 0D
Shirvaiak, Mukul, 0S
Singh, Harpreet, 0W
Tektonidis, Marco, 09
Truax, Lucas, 1A
Wang, Dan, 10, 11, 12, 13, 14, 1D
Watanabe, Jun-ichiro, 0P, 0U
Xiang, Dan, 0J
Xu, Yang, 0J
Yamamoto, Tomonori, 0U
Zhang, Guanglei, 10, 1D
Zhao, Yu, 0P, 0U

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Conference Committee

Symposium Chair

Arthur A. Morrish, Raytheon Space and Airborne Systems (United States)

Symposium Co-chair

Ruth Moser, Air Force Research Laboratory (United States)

Conference Chairs

Michael C. Dudzik, IQM Research Institute (United States)
Jennifer C. Ricklin, Carnegie Mellon University—Software Engineering Institute (United States)

Conference Program Committee

John Audia, Naval Postgraduate School (United States)
Andrew Dallas, Soar Technology, Inc. (United States)
Mark Donofiro, Southern Research (United States)
Brian Hibbels, Naval Postgraduate School (United States)
Robert A. Hummel, National Geospatial-Intelligence Agency (United States)
Herbert W. Klumpe III, Air Force Research Laboratory (United States)
John Marx, Air Force Research Laboratory (United States)
Brad McNett, U.S. Army TARDEC (United States)
Matt Mickelson, The MITRE Corporation (United States)
Frank Prautzsch, Velocity Technology Partners, LLC (United States)
Jeremy Salinger, General Motors Company (United States)
Shawn Taylor, Sandia National Laboratories (United States)
Andrew Williams, Air Force Research Laboratory (United States)

Session Chairs

1 Cyber and Software Security for Autonomous Operations

Michael C. Dudzik, IQM Research Institute (United States)
Jennifer C. Ricklin, Carnegie Mellon University—Software Engineering Institute (United States)
2 Object Sensing for Detection, Classification, and Autonomous Operations
Richard W. Linderman, Office of the Assistant Secretary of Defense (United States)
Michael C. Dudzik, IQM Research Institute (United States)

3 Networks and the IOT for Autonomous Systems I
Jeremy Salinger, General Motors Company (United States)
Brad McNett, U.S. Army TARDEC (United States)

4 Networks and the IOT of Autonomous Systems II
Jeremy Salinger, General Motors Company (United States)
Brad McNett, U.S. Army TARDEC (United States)

5 Autonomous Operations, Artificial Intelligence, and Navigation I
Shawn Taylor, Sandia National Laboratories (United States)
Michael C. Dudzik, IQM Research Institute (United States)

6 Autonomous Operations, Artificial Intelligence, and Navigation II
Shawn Taylor, Sandia National Laboratories (United States)
Jennifer C. Ricklin, Carnegie Mellon University—Software Engineering Institute (United States)

7 Autonomous Operations, Artificial Intelligence, and Navigation III
Shawn Taylor, Sandia National Laboratories (United States)
Jennifer C. Ricklin, Carnegie Mellon University—Software Engineering Institute (United States)