Contents

| v | Authors |
| vii | Conference Committee |

LAB-ON-CHIP BIOSENSORS I

10728 03	Fabrication and characterization of boron-doped ultrananocrystalline diamond microelectrodes modified with multi-walled carbon nanotubes and nafion [10728-2]
10728 04	Antifouling technology of metamaterial structure using biomimetic technology [10728-3]
10728 06	Lab-on-a-chip photonic biosensor for detection of antigens [10728-5]

LAB-ON-CHIP BIOSENSORS II

| 10728 08 | Ultracompact high-sensitivity biosensing based on regenerable laminated bio-conjugation in integrated photonic circuits [10728-7] |

PHOTONIC AND PLASMONIC BIOSENSORS I

| 10728 0B | 3D printed micro-scale fiber-optic probe for intravascular pressure sensing [10728-10] |
| 10728 0E | Enhanced molecular beacon based DNA detection using plasmonic open-ring nanoarrays [10728-14] |

PHOTONIC AND PLASMONIC BIOSENSORS II

| 10728 0F | Biosensing using long-range surface plasmon structures [10728-15] |
| 10728 0G | Artificial neural network to predict the refractive index of a liquid infiltrating a chiral sculptured thin film [10728-16] |

POSTER SESSION

<p>| 10728 0L | Study of the anti-fouling polymer sheet which used biomimetics technique [10728-21] |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0M</td>
<td>Noninvasive detection of collagen regeneration after an isotretinoin treatment and ablative laser surgery in patients with acne scars by Raman spectroscopy</td>
<td>[10728-22]</td>
</tr>
<tr>
<td>0N</td>
<td>High-performance bimetallic SPR sensor for ciprofloxacin based on molecularly imprinted polymer</td>
<td>[10728-23]</td>
</tr>
<tr>
<td>0O</td>
<td>Correlation structure of Stokes parametric images of polycrystalline films of human biological fluids</td>
<td>[10728-24]</td>
</tr>
<tr>
<td>0P</td>
<td>Clinical applications of the Mueller-matrix reconstruction of the polycrystalline structure of multiple-scattering biological tissues</td>
<td>[10728-25]</td>
</tr>
<tr>
<td>0Q</td>
<td>Diffuse tomography of optical anisotropy of tumors and necrotic conditions of biological tissues</td>
<td>[10728-26]</td>
</tr>
<tr>
<td>0R</td>
<td>System of 3D Mueller-matrix reconstruction of fibrillar networks of biological tissues of various morphological structures and physiological states</td>
<td>[10728-27]</td>
</tr>
<tr>
<td>0S</td>
<td>Digital polarization-holographic 3D reconstruction of the polycrystalline structure of blood films in the diagnosis of breast cancer</td>
<td>[10728-28]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aksnes, Astrid, 06
Arumugam, Prabhu, 03
Bakun, O., OR, 0S
Besaga, R., OR, 0S
Björk Aminninsdottir, Nina, 06
Bodnár, G. B., 0O, 0P
Bukkapatnam, Satish T. S., 0G
Cabrera-Alonso, R., 0M
Castillo-Martínez, C., 0M
Chang, An-Yi, 03
Chen, Y. Y., 08
Cheng, L.-J., 0E
Chiwo, F. S., 0M
Coote, Joanna, 0B
Desjardins, Adrien E., 0B
Dubolazov, A. V., 0O, 0P
Escobar, Marco A., 0F
Finlay, Malcolm C., 0B
Garazduyk, M. S., 0O
Golub, S., OR, 0S
González, F. J., 0M
Gorsky, M. P., OR, 0S
Guevara, E., 0M
Guzman-Cabrera, Rafael, 0F
Guzman-Sepulveda, J. R., 0F
Høvik, Jens, 06
Kannegulla, A., 0E
Kushnerik, L. Yu., OR, 0S
Kvasnuyk, D., 0S
Lakhtakia, Akhlesh, 0G
Liu, Z. Y., 0B
Liu, A. Q., 0B
Liu, Y., 0E
Martínez-Arias, Carlos G., 0F
Matsumoto, Yoko, 0L
McAtee, Patrick D., 0G
Minami, Hiroko, 0L
Mosse, Charles A., 0B
Motrich, A. V., 0Q
Nishino, Tomoki, 04, 0L
Olar, O. I., 0G
Olar, O. V., 0P
Osornio-Martínez, C. E., 0M
Pang, Kai, 0N
Papakonstantinou, Ioannis, 0B
Pavlukovich, N., 0Q
Pavlukovich, O. V., 0Q
Pérez-Atamoros, F., 0M
Pidkamin, L., 0P
Poduval, Radhika K., 0B
Prydiy, O., 0P
Ramírez-Elias, M. G., 0M
Sahinovskiy, M. Yu., 0O
Sekiguchi, Afsushi, 04, 0L
Sidor, M. I., 0P, 0Q
Sokolniuk, S. O., OR
Sokolnyk, S. O., 0P
Soltys, I. V., 0Q
Sun, Y. I., 0N
Syvokorovskaya, A.-V., 0O, 0R, 0S
Tanigawa, Hiroshi, 04, 0L
Tokumaru, Kazuki, 0L
Tomka, Yu. Ya., OR, 0S
Torres-Cisneros, Miguel, 0F
Truc, N. K., 0B
Tsumori, Fujio, 0L
Tslyukhalo, O., 0O
Ushenko, A. G., 0Q
Ushenko, V. A., 0O
Ushenko, Yu. A., 0P, OR, 0S
Wang, Xiaoping, 0N
Wu, B., 0E
Wulchulyak, O. Ya., 0Q
Xiong, Q. H., 0B
Xiong, S., 08
Yadav, Mukesh, 06
Zhang, Bing, 0N
Zhytaryuk, V. G., 0Q
Conference Committee

Symposium Chairs
Halina Rubinsztein-Dunlop, The University of Queensland (Australia)
Mark L. Brongersma, Geballe Laboratory for Advanced Materials (GLAM), Stanford University (United States)

Symposium Co-chairs
Harry A. Atwater Jr., California Institute of Technology (United States)
Nikolay I. Zheludev, Optoelectronics Research Centre (United Kingdom) and Nanyang Technological University (Singapore)

Conference Chairs
Hooman Mohseni, Northwestern University (United States)
Massoud H. Agahi, Harbor-UCLA Medical Center (United States) and Cedars-Sinai Medical Center (United States)
Manijeh Razeghi, Northwestern University (United States)

Conference Program Committee
Gert Cauwenberghs, University of California, San Diego (United States)
Philippe M. Fauchet, Vanderbilt University (United States)
Ryan M. Gelfand, CREOL, The College of Optics and Photonics, University of Central Florida (Canada)
David H. Gracias, Johns Hopkins University (United States)
Kimberly S. Hamad-Schifferli, Massachusetts Institute of Technology (United States)
Yu-Hwa Lo, University of California, San Diego (United States)
Omer G. Memis, Northwestern University (United States)
Masoud Panjehpour, Thompson Cancer Survival Center (United States)
Qimin Quan, Harvard University (United States)
Björn M. Reinhard, Boston University (United States)
Luisa Torsi, Università degli Studi di Bari Aldo Moro (Italy)
Adam T. Woolley, Brigham Young University (United States)

Session Chairs
1 Lab-On-Chip Biosensors I
 Balaji Panchapakesan, Worcester Polytechnic Institute (United States)
 Ryan M. Gelfand, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
2 Lab-On-Chip Biosensors II
Ryan M. Gelfand, CREOL, The College of Optics and Photonics, University of Central Florida (United States)

3 Photonic and Plasmonic Biosensors I
Ryan M. Gelfand, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
Nikolay S. Makarov, UbiQD, Inc. (United States)

4 Photonic and Plasmonic Biosensors II
Ryan M. Gelfand, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
Khalid M. Hattar, Sandia National Laboratories (United States)