Front Matter: Volume 10723
Optical Trapping and Optical Micromanipulation XV

Kishan Dholakia
Gabriel C. Spalding
Editors

19–23 August 2018
San Diego, California, United States

Sponsored by
SPIE

Cosponsored by
Laser Quantum (United Kingdom)

Published by
SPIE

Volume 10723
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510620179

Published by SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

HOLOGRAPHIC OPTICAL SYSTEMS: FROM SPECKLE TO STUDIES OF NEURONS

10723 02 Volumetric display by movement of particles trapped in a laser via photophoresis (Invited Paper) [10723-1]

10723 03 Stiff traps using super-oscillating optical beams [10723-2]

10723 06 Spatio-temporal modulation of light for stimulating and recording neuronal activity [10723-5]

STATISTICAL MECHANICS OF SMALL SYSTEMS

10723 0A Fluctuation-dissipation of an active Brownian particle under confinement [10723-10]

SPECIAL SESSION HONORING HALINA RUBINSZTEIN-DUNLOP

10723 0E Optical trapping of individual magnetic nanoparticles (Invited Paper) [10723-15]

HIGH-SENSITIVITY DETECTORS I

10723 0H Tests of fundamental physics with optically levitated microspheres in high vacuum (Invited Paper) [10723-18]

10723 0J MEMS gravity sensors for imaging density anomalies (Invited Paper) [10723-20]

10723 0L Interaction of acoustic waves with optomechanical resonators and oscillators [10723-22]

MEASUREMENT OF FLUCTUATION-INDUCED EFFECTS

10723 0O Control over phase separation and nucleation using an optical-tweezing potential (Invited Paper) [10723-25]
RADIATION PRESSURE, TRACTOR BEAMS, AND SOLAR SAILS

10723 0Q The Abraham-Minkowski momentum controversy for a linear magneto-dielectric medium [10723-27]

10723 0R Energy, linear momentum, and angular momentum exchange between an electromagnetic wave-packet and a small particle [10723-28]

10723 0U Verification of radiation pressure on a diffraction grating [10723-31]

10723 0V Mechanical characterization of planar springs for compact radiation pressure power meters (Invited Paper) [10723-32]

REACTIVE OPTICAL MATTER

10723 0Y Analysis of the dynamics of electric dipoles in fluctuating electromagnetic fields [10723-35]

HIGH-SENSITIVITY DETECTORS II

10723 11 Solid state laser cooling of optically levitated particles [10723-39]

10723 13 Infrared induced photo-dynamics of NV centres in optically trapped nanodiamond [10723-41]

10723 14 An apparatus for optical levitation of microspheres in high vacuum with rotational control [10723-42]

MICRORHEOLOGICAL PROBES AND STUDIES

10723 1D Active microrheology using a two-particle system coupled by hydrodynamic interactions in optical tweezers [10723-51]

USING THE PHOTONIC TOOLBOX TO STUDY CELLS AND THEIR ORGANELLES

10723 1H Studies of biflagellated microalgae adhesion using an optical trap system [10723-55]
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAR-FIELD MANIPULATION, PLASMONIC TRAPS, AND AUXILIARY TOOLS</td>
<td>Holographic plasmonic tweezing for dynamic trapping and manipulation (Invited Paper)</td>
<td>[10723-57]</td>
</tr>
<tr>
<td>TRAPPING AT EXTREMES ("GONZO TRAPPING")</td>
<td>Deposition of levitated charged nanoparticles on a substrate using an electrostatic lens</td>
<td>[10723-62]</td>
</tr>
<tr>
<td></td>
<td>Investigation of mechanical torque applied by electron vortex beams in a liquid cell</td>
<td>[10723-63]</td>
</tr>
<tr>
<td>OPTICAL MANIPULATION OF MATTER THROUGH GASEOUS MEDIA</td>
<td>Morphology and motion of single optically trapped aerosol particles from digital holography</td>
<td>[10723-67]</td>
</tr>
<tr>
<td>PICK-AND-PLACE AND HYBRID TECHNOLOGIES</td>
<td>Assembly of mesoscopic to macroscopic particles with optoelectronic tweezers (OET) (Invited Paper)</td>
<td>[10723-71]</td>
</tr>
<tr>
<td></td>
<td>Hopping mechanism of particles and cells escaping from optoelectronic tweezer traps</td>
<td>[10723-72]</td>
</tr>
<tr>
<td>NOVEL MANIPULATION AND SORTING AND ACTIVE MATTER</td>
<td>Controllable particle hopping in optofluidic lattice for antibody screening and binding efficiency measurement</td>
<td>[10723-73]</td>
</tr>
<tr>
<td>MICRO-MECHANICS: STRETCHING AND COMPRESSION</td>
<td>Study for cell deformability by optical manipulation</td>
<td>[10723-78]</td>
</tr>
<tr>
<td></td>
<td>Atomic force microscopy combined with optical tweezers (AFM/OT): characterization of micro and nanomaterial interactions</td>
<td>[10723-79]</td>
</tr>
<tr>
<td>POSTER SESSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10723 2B</td>
<td>Optical tweezers toolbox: full dynamics simulations for particles of all sizes [10723-89]</td>
<td></td>
</tr>
<tr>
<td>10723 2C</td>
<td>Measuring the motility and drag forces acting on biological particles using optical tweezers [10723-90]</td>
<td></td>
</tr>
<tr>
<td>10723 2D</td>
<td>Using single-beam optical tweezers for the passive microrheology of complex fluids [10723-91]</td>
<td></td>
</tr>
<tr>
<td>10723 2F</td>
<td>Sensor-side Brownian noise reduction in optically trapped probe microscopy [10723-93]</td>
<td></td>
</tr>
<tr>
<td>10723 2I</td>
<td>Computational toolbox to calculate the dynamics of nanometer-size particles interacting with structured light beams [10723-96]</td>
<td></td>
</tr>
<tr>
<td>10723 2J</td>
<td>Optical feedback tweezers [10723-98]</td>
<td></td>
</tr>
<tr>
<td>10723 2K</td>
<td>Spirally polarized OAM beam generation in few-mode fiber [10723-99]</td>
<td></td>
</tr>
<tr>
<td>10723 2O</td>
<td>Assembly and 2D manipulation of colloidal crystal by temperature gradient [10723-103]</td>
<td></td>
</tr>
<tr>
<td>10723 2P</td>
<td>3D trapping of thermally generated microbubbles [10723-104]</td>
<td></td>
</tr>
<tr>
<td>10723 2Q</td>
<td>Assembly and manipulation of mesoscopic particles using micro bubbles in thermo-optical tweezers [10723-105]</td>
<td></td>
</tr>
<tr>
<td>10723 2R</td>
<td>Manipulation of photothermally generated microbubbles [10723-106]</td>
<td></td>
</tr>
<tr>
<td>10723 2Y</td>
<td>Comparison of the orbital and spin rotation of a dielectric particle [10723-113]</td>
<td></td>
</tr>
<tr>
<td>10723 30</td>
<td>Integrated nanoaperture optical fiber tweezer [10723-115]</td>
<td></td>
</tr>
<tr>
<td>10723 34</td>
<td>Analysis of the mechanism of the vertical spin formation for the evanescent wave in the near-surface layer of biological tissue fluid [10723-119]</td>
<td></td>
</tr>
<tr>
<td>10723 35</td>
<td>Experimental demonstration of nanoparticles motion by the vertical spin of the evanescent wave action in biological media [10723-120]</td>
<td></td>
</tr>
<tr>
<td>10723 3A</td>
<td>Direct measurement of negative light pressure by means of PTBs nanonewton force facility [10723-127]</td>
<td></td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abeywickrema, Ujitha, 2P
Angelsky, O. V., 2Y, 35
Angelsky, P. O., 35
Arie, Ady, 03
Armstrong, Declan, 2C
Artusio-Glimpse, Alexandra B., 0V
Atherton, David, 11
Babbitt, Wm. Randall, 11
Banerjee, Ayan, 1D, 2Q
Banerjee, Partha P., 2P
Barber, Zeb, 11
Bechhofer, John, 2J
Belai, O., 3A
Bui, Ann A. M., 2B
Bueltelisch, S., 3A
Caciagli, Alessio, 2D
Calvert-Lane, Jackson, 2C
Chen, T. N., 1Y
Chen, Zhebo, 35
Chin, L. K., 1Y
Choi, Sebin, 22
Chrzanowska-Gizynska, J., 23
Chu, Ying-Ju Lucy, 0U
Coppock, Joyce E., 1N
Cordero-Esquivel, Beatriz, 1H
Crenshaw, Michael E., 0Q
Darla, Vincent, 06
David, Grégory, 1S
de Sousa, Nuno, 0Y
DeVyldere, Hannah, 1O
Dixon, Thomas F., 2F
Ehtaiab, Jamal M., 30
Eiser, Erika, 2D
Esat, Kivanç, 1S
Ferrer-Garcia, Manuel F., 2I
Frouet-Perez, Luis, 0Y
Garces, Veneranda G., 1H
Ghosh, Subhrokolli, 2Q
Ghosh, Sunita, 14
Gordon, Reuven, 30
Greenberg, Alice, 1O
Guo, Bin, 35
Hammond, Giles, 0J
Hannan, José, 1N
Hari Krishna, C., 2K
Hossein-Zadeh, Mani, 0L
Howe, L., 02
Huang, Ke, 0L
Huff, Preston R., 1J
Ivanskiy, D. I., 34, 35
Jansson, Eric M., 0U
Juarez-Alvarez, Beatriz A., 1H
Kane, B. E., 1N
Kirchhoff, J., 3A
Kleuter, Samuel, 1N
Kolbow, Joshua D., 1J
Kowalewski, T. A., 23
Kumar, Avinash, 2J
Kumar, Randhir, 1D
Kurek, E. I., 2Y
Laughlin, E., 02
Lawrence Castanares, Michael, 06
Lee, Joon Sang, 22
Lehman, John, 0V
Lenton, Isaac C. D., 2B, 2C
Li, Yunyang, 2P
Lindquist, Nathan C., 1J
Liu, A. Q., 1Y
Lopez-Mago, Dorilian, 2I
López Pastor, Víctor J., 0Y
Luis-Hita, Jorge, 0Y
Ma, He, 06
Maksymyak, A. P., 2Y, 35
Maksymyak, P. P., 2Y, 35
Mansuripur, Masud, 0R
Marqués, Manuel I., 0Y
McAdams, I. S., 1N
McCaulley, John J., 1J
McMorran, Benjamin, 1O
Middlemiss, Richard, 0J
Monteiro, Fernando, 14
Moon, Ji Young, 22
Moore, David C., 0H, 14
Mueller, M., 3A
Murphy, Jacob P. J., 1N
Nagar, Harel, 03
Neale, Steven L., 1W
Nesterov, V., 3A
Nieminen, Timo A., 2B, 2C
Nies, D., 3A
Noack, Andreas, 0J
Nowak, M., 23
Nygaard, E., 02
Odershede, Lene B., 0E
O’Donnell, Kevin, 1H
Ortega-Mendoza, J. G., 2R
Ou-Yang, H. D., 0A
Padilla-Vivanco, A., 2R

vii
Paul, Shuvojit, 1D
Pavan, V. D. R., 2K
Pawlowska, S., 23
Peatross, J., 02
Pierce, Jordan, 1O
Pierini, F., 23
Prasad, Abhinav, 0J
Qaderi, K., 02
Rahn, Daniel, 0V
Ramírez Ramírez, J., 2O, 2R
Ramos-García, R., 2O, 2R
Reece, Peter, 13, 2F
Rivas-Cambero, I., 2R
Rogers, Kyle, 0V
Rogers, W., 02
Roichman, Yael, 03
Roy, Sourabh, 2K
Rubinsztein-Dunlop, Halina, 2B, 2C
Ruiz U., 2O
Russell, L. W., 13
Ryger, Ivan, 0V
Sáenz, Juan José, 0Y
Samadi, Akbar, 0E
Sarabia-Alonso, J. A., 2R
Scheffold, Frank, 0Y
Shen, Chong, 0A
Shi, Y. Z., 1Y
Signorell, Ruth, 1S
Simpson, D. A., 13
Singh, Brijesh Kumar, 03
Singh, Rajesh, 2Q
Smailley, D., 02
Spalding, Gabriel C., 1H
St. John, Demi, 11
Stilgое, Alexander B., 2B, 2C
Stoev, Iliya D., 2D
Swartzlander, Jr., Grover A., 0U
Tetienne, J.-P., 13
Thanopulos, Ioannis, 1S
Thiel, Charles, 11
Thweatt, Jonathan T., 1J
Tkachuk, V. M., 34
Torres Hurtado, S. A., 2R
Toxqui-Quitl, C., 2R
van Assendelft, Elizabeth C., 14
Vazquez Lozano, J., 2O
Walczak, M., 23
Walowitz, Andrew, 0V
Walton, Finlay, 0O
Wang, Mengfing, 0E
Wheeler, Aaron R., 1X
Williams, Paul, 0V
Woodburn, Philip J., 11
Wu, Ji H., 1Y
Wynne, Klaas, 0O
Xing, Zhongyang, 2D
Xiong, S., 1Y
Yang, Yanli, 0E
Zaca-Morán, P., 2R
Zembrzycki, K., 23
Zenkova, C.Yu., 34
Zhang, Shuailong, 1X
Zhang, Y., 1Y
Conference Committee

Symposium Chairs

Halina Rubinsztein-Dunlop, The University of Queensland (Australia)
Mark L. Brongersma, Geballe Laboratory for Advanced Materials (GLAM), Stanford University (United States)

Symposium Co-chairs

Harry A. Atwater Jr., California Institute of Technology (United States)
Nikolay I. Zheludev, Optoelectronics Research Centre (United Kingdom) and Nanyang Technological University (Singapore)

Conference Chairs

Kishan Dholakia, University of St. Andrews (United Kingdom)
Gabriel C. Spalding, Illinois Wesleyan University (United States)

Conference Program Committee

Ashley R. Carter, Amherst College (United States)
Roberto Di Leonardo, Università degli Studi di Roma La Sapienza (Italy)
Jesper Glückstad, Technical University of Denmark (Denmark)
Reuven Gordon, University of Victoria (Canada)
Simon Hanna, University of Bristol (United Kingdom)
Masud Mansuripur, College of Optical Sciences, The University of Arizona (United States)
James Millen, Universität Wien (Austria)
H. Daniel Ou-Yang, Lehigh University (United States)
Thomas T. Perkins, JILA (United States)
Daryl Preece, University of California, San Diego (United States)
Rubén Ramos-García, Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico)
Halina Rubinsztein-Dunlop, The University of Queensland (Australia)
Nick Vamivakas, University of Rochester (United States)

Session Chairs

1 Holographic Optical Systems: From Speckle to Studies of Neurons
 Daryl Preece, University of California, San Diego (United States)
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hybrid, Correlative Measurement Systems</td>
<td>Michael W. Berns, Beckman Laser Institute and Medical Clinic</td>
<td>(United States)</td>
</tr>
<tr>
<td>3</td>
<td>Statistical Mechanics of Small Systems</td>
<td>Kishan Dholakia, University of St. Andrews</td>
<td>(United Kingdom)</td>
</tr>
<tr>
<td>4</td>
<td>Special Session Honoring Halina Rubinsztein-Dunlop</td>
<td>Wolfgang Losert, University of Maryland, College Park</td>
<td>(United States)</td>
</tr>
<tr>
<td>5</td>
<td>High-Sensitivity Detectors I</td>
<td>Halina Rubinsztein-Dunlop, The University of Queensland</td>
<td>(Australia)</td>
</tr>
<tr>
<td>6</td>
<td>Measurement of Fluctuation-Induced Effects</td>
<td>H. Daniel Ou-Yang, Lehigh University</td>
<td>(United States)</td>
</tr>
<tr>
<td>7</td>
<td>Radiation Pressure, Tractor Beams, and Solar Sails</td>
<td>Gabriel C. Spalding, Illinois Wesleyan University</td>
<td>(United States)</td>
</tr>
<tr>
<td>8</td>
<td>Reactive Optical Matter</td>
<td>Masud Mansuripur, College of Optical Sciences, The University of Arizona</td>
<td>(United States)</td>
</tr>
<tr>
<td>9</td>
<td>High-Sensitivity Detectors II</td>
<td>David C. Moore, Yale University</td>
<td>(United States)</td>
</tr>
<tr>
<td>10</td>
<td>Optopfluidic Biological Studies</td>
<td>Steven L. Neale, University of Glasgow</td>
<td>(United Kingdom)</td>
</tr>
<tr>
<td>11</td>
<td>Interrogating Single Bio-Molecules and Nano-Components</td>
<td>Md. Mahmudur Rahman, University of California, Santa Cruz</td>
<td>(United States)</td>
</tr>
<tr>
<td>12</td>
<td>Tutorial on Optical Tweezers Microrheology</td>
<td>H. Daniel Ou-Yang, Lehigh University</td>
<td>(United States)</td>
</tr>
<tr>
<td>13</td>
<td>Microrheological Probes and Studies</td>
<td>Rae M. Robertson-Anderson, University of San Diego</td>
<td>(United States)</td>
</tr>
<tr>
<td>14</td>
<td>Using the Photonic Toolbox to Study Cells and Their Organelles</td>
<td>Ashley R. Carter, Amherst College</td>
<td>(United States)</td>
</tr>
<tr>
<td>15</td>
<td>Near-Field Manipulation, Plasmonic Traps, and Auxiliary Tools</td>
<td>Reuven Gordon, University of Victoria</td>
<td>(Canada)</td>
</tr>
<tr>
<td>16</td>
<td>Trapping at Extremes ("Gonzo Trapping")</td>
<td>Justin Bruce Peatross, Brigham Young University</td>
<td>(United States)</td>
</tr>
</tbody>
</table>
17 Optical Manipulation of Matter Through Gaseous Media
Kishan Dholakia, University of St. Andrews (United Kingdom)

18 Pick-and-Place and Hybrid Technologies
Rubén Ramos-García, Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico)

19 Novel Manipulation and Sorting and Active Matter
Steven L. Neale, University of Glasgow (United Kingdom)

20 Micro-Mechanics: Stretching and Compression
Halina Rubinsztein-Dunlop, The University of Queensland (Australia)

21 Future Work for the OTOM Community
Halina Rubinsztein-Dunlop, The University of Queensland (Australia)