The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:


ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510621152

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
  ▪ The first five digits correspond to the SPIE volume number.
  ▪ The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
## Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>WAVE OPTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10772 02</td>
<td>Wave-optics comparisons to a scaling-law formulation [10772-1]</td>
</tr>
<tr>
<td>10772 03</td>
<td>Light-field reconstruction from scattered light using plenoptic data [10772-2]</td>
</tr>
<tr>
<td>10772 04</td>
<td>Progress in image formation in deep turbulence with laser illumination [10772-42]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>WAVE OPTICS SIMULATION FOR BEAM CONTROL: JOINT SESSION WITH CONFERENCES 10770 AND 10772</th>
</tr>
</thead>
<tbody>
<tr>
<td>10772 05</td>
<td>Influence functions of a deformable mirror: least-squares wave-front fitting [10772-3]</td>
</tr>
<tr>
<td>10772 06</td>
<td>Investigation of branch-point density using traditional wave-optics techniques [10772-4]</td>
</tr>
<tr>
<td>10772 07</td>
<td>Wave-optics simulation of correlated speckle fields for use in closed-loop-phase-compensation studies [10772-5]</td>
</tr>
<tr>
<td>10772 08</td>
<td>Investigation of turbulence thermal blooming interaction using the split-step beam propagation method [10772-6]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>WAVEFRONT SENSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>10772 09</td>
<td>Dual wavefront sensing design for supersonic wind tunnel experiments [10772-7]</td>
</tr>
<tr>
<td>10772 0A</td>
<td>An analytical study on the presence of inter-modal cross-talk in a modal wavefront sensor [10772-8]</td>
</tr>
<tr>
<td>10772 0B</td>
<td>Truncation robust centroiding for wavefront sensors [10772-9]</td>
</tr>
<tr>
<td>10772 0C</td>
<td>Profiling of atmospheric turbulence along a path using two beacons and a Hartmann turbulence sensor [10772-10]</td>
</tr>
<tr>
<td>10772 0D</td>
<td>Improvement in modal wavefront sensing in terms of cross-talk reduction and linearity [10772-11]</td>
</tr>
</tbody>
</table>
SESSION 4  DECONVOLUTION AND SUPERRESOLUTION

10772 0E  Super-resolution imaging via expectation-maximization estimation of near stellar neighborhoods [10772-12]

10772 0G  Performance limits and trade-offs of superresolution imaging systems [10772-14]

SESSION 5  IMAGING INSTRUMENTS

10772 0H  Distributed-volume optical disturbance generation in a scaled-laboratory environment using nematic liquid-crystal phase modulators [10772-15]

10772 0I  Laser scanning confocal microscopy using illumination beams with different polarizations in quick succession [10772-17]

10772 0J  High-contrast imaging of space objects using diffractive optics [10772-18]

SESSION 6  IMAGING FOR BIOLOGY AND UNDERSTANDING

10772 0M  Multi-domain constraint based one-step selective-reconstruction method for spectral micro-CT [10772-20]

10772 0O  The potential for Poisson image reconstruction models for electron tomography [10772-22]

10772 0P  Molecular imaging with x-ray free-electron lasers [10772-23]

SESSION 7  ADAPTIVE OPTICS AND BEAM FORMATION

10772 0R  Polychromatic speckle mitigation for improved adaptive-optics system performance [10772-26]

10772 0S  On-sky results and performance of low latency centroiding algorithms for adaptive optics implemented in FPGA [10772-27]

10772 0T  Optical diagnosis of laser plasma based on coherent modulation imaging [10772-28]

10772 0U  Water-cooled stacked-actuator deformable mirror for high CW power laser beam correction [10772-29]

10772 0V  Fast adaptive optical system for 1.5 km horizontal beam propagation [10772-30]

10772 0W  Laser beam focusing through the scattering medium-low order aberration correction approach [10772-31]
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10772 0X</td>
<td>Ghost image generated by relative movement of target and lidar platform in enhanced self-heterodyne SAIL</td>
<td>[10772-32]</td>
</tr>
<tr>
<td>10772 0Y</td>
<td>Effect of aberration on the electric field orientation around the focus of a polarized light beam</td>
<td>[10772-33]</td>
</tr>
<tr>
<td>10772 0Z</td>
<td>3D coherent imaging ladar based on FMCW technology</td>
<td>[10772-34]</td>
</tr>
<tr>
<td>10772 10</td>
<td>The accuracy reconstruction of phase map optical field using of a 2D Hilbert transform</td>
<td>[10772-35]</td>
</tr>
<tr>
<td>10772 11</td>
<td>The reconstruction of the phase distribution of the intensity of a speckle field based on the use of the discrete 2D “window” Hilbert transform</td>
<td>[10772-36]</td>
</tr>
<tr>
<td>10772 16</td>
<td>Online submillimeter three dimensional imaging of magnetic and paramagnetic contaminants flow rate in multiphase flow pipelines using magnetic particle imaging technique</td>
<td>[10772-43]</td>
</tr>
<tr>
<td>10772 17</td>
<td>Real-time ECT-based imaging device for solid contaminants imaging</td>
<td>[10772-44]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Angelska, A. O., 10
Angelsky, P. O., 11
Arnal, Romain D., 0P
Asmolova, Olha, 0J
Back, Andrew L., 0C
Beck, Jeffrey R., 06
Bin Said, K., 16
Bingham, Samuel P., 02
Borouah, Bosanta R., 0A, 0D, 0I, 0Y
Bos, Jeremy P., 06
Bose-Pillai, Santasri R., 0C
Brennan, Terry J., 06, 07, 0R
Buddha, S. S. Goutam, 0I
Burrell, Derek J., 07
Cain, Stephen C., 0E
Cegarra Polo, Manuel, 0S
Cooper, Matthew A., 02, 09
Dayton, David C., 05, 09, 0H
Dearborn, Michael, 0J
Fiorino, Steven T., 0C
Galaktionov, Illia, 0V, 0W
Gudimetla, V. S. Rao, 04
Hanjra, Prayant, 0J
Hassall, Arthur, 05, 0H
Holmes, R., 04
Hou, Peipei, 0Z
Ihsane, M., 16
Kalita, Ranjan, 0I, 0Y
Katra, M., 17
Kong, Fanpeng, 0S
Konwar, Santanu, 0A, 0D
Kopylov, Evgeniy, 0V
Kudryashov, Alexis V., 0U, 0V, 0W
Lambert, Andrew, 0S
Leger, James R., 03
Liu, Cheng, 0T
Lu, Wei, 0Z
Lu, Zhiyong, 0X, 0Z
Luan, Zhu, 0Z
McCrae, Jack E., 0C
Mello, Alexandre J. Tuoto S., 0B
Millane, Rick P., 0P
Mohit, M., 17
Murphy, Connor E., 08
Nikitin, Alexander, 0W
Plimmer, Barton, 05
Radoshevich, Cameron J., 09
Rhoadarmer, Troy, 0H
Riabyi, P. A., 10, 11
Rice, Christopher A., 0C
Rodrigues Pipa, Daniel, 0B
Rukosuev, Alexey, 0U, 0V
Samarkin, Vadim, 0U, 0V, 0W
Sanders, Toby, 0C
Sasaki, Takahiro, 03
Selph, Benjamin, 09
Sheldakova, Julija, 0U, 0W
Spencer, Mark F., 02, 0S, 06, 07, 08, 09, 0H, 0R
Sun, Jianfeng, 0X, 0Z
Tao, Hua, 0T
Testorf, Markus E., 0G
Toporovskiy, Vladimir, 0U
Van Zandt, Noah R., 02, 07, 0R
Vieira, Lucas Edson Lopes, 0B
Wang, Qian, 0M
Wilcox, Christopher C., 09
Wilson, Matthew D., 0C
Wittich, Donald J., 09
Wojtas, David H., 0P
Xu, Qian, 0Z
Young, Elizabeth J., 0J
Yu, Hengyong, 0M
Zhang, Guo, 0X
Zhou, Yu, 0X, 0Z
Zhu, Jianqiang, 0T
Zhu, Yining, 0M
Conference Committee

Program Track Chairs

Stephen M. Hammel, SPAWAR Systems Center, Pacific (United States)
Alexander M. J. van Eijk, TNO Defence, Security and Safety (Netherlands)

Conference Chairs

Jean J. Dolne, The Boeing Company (United States)
Philip J. Bones, University of Canterbury (New Zealand)

Conference Program Committee

Mark A. Anastasio, Washington University in St. Louis (United States)
Stephen C. Cain, Air Force Institute of Technology (United States)
Joe Chen, Arizona State University (United States)
Richard Clare, University of Canterbury (New Zealand)
David C. Dayton, Applied Technology Associates (United States)
Peter C. Doerschuk, Cornell University (United States)
Veit Elser, Cornell University (United States)
James Fienup, University of Rochester (United States)
Victor L. Gamiz, Air Force Research Laboratory (United States)
Richard B. Holmes, Boeing LTS Inc. (United States)
Kenneth J. Jerkaitis, Applied Technology Associates (United States)
Andrew J. Lambert, UNSW Canberra (Australia)
Liren Liu, Shanghai Institute of Optics and Fine Mechanics (China)
Zhaowei Liu, University of California, San Diego (United States)
Julian Maclaren, Stanford University (United States)
Rick P. Millane, University of Canterbury (New Zealand)
Sergio R. Restaino, U.S. Naval Research Laboratory (United States)
Mark F. Spencer, Air Force Research Laboratory (United States)
Markus E. Testorf, Dartmouth College (United States)
David G. Voelz, New Mexico State University (United States)
Kevin J. Webb, Purdue University (United States)
David Wojtas, University of Canterbury (New Zealand)
Jong Chul Ye, KAIST (Korea, Republic of)
Chun Hong Yoon, SLAC Stanford University (United States)

Session Chairs

1 Wave Optics
Philip J. Bones, University of Canterbury (New Zealand)
2 Wave Optics Simulation for Beam Control: Joint Session with Conferences 10770 and 10772
Jeremy P. Bos, Michigan Technological University (United States)
Mark F. Spencer, Air Force Research Laboratory (United States)

3 Wavefront Sensing
Richard B. Holmes, Boeing LTS Inc. (United States)

4 Deconvolution and Superresolution
David C. Dayton, Applied Technology Associates (United States)

5 Imaging Instruments
David Wojtas, University of Canterbury (New Zealand)

6 Imaging for Biology and Understanding
Markus E. Testorf, Dartmouth College (United States)

7 Adaptive Optics and Beam Formation
Jean J. Dolne, The Boeing Company (United States)