Front Matter: Volume 10811
## Contents

### SESSION 1  HIGH-POWER LASERS AND APPLICATIONS I

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10811 05</td>
<td>Brilliant x-ray sources generation based on high-quality laser-driven wakefield accelerator</td>
<td>[10811-3]</td>
</tr>
<tr>
<td>10811 07</td>
<td>Generation of multiband annular beams by femtosecond Bessel laser beam in silica glass</td>
<td>[10811-5]</td>
</tr>
</tbody>
</table>

### SESSION 2  HIGH-POWER LASERS AND APPLICATIONS II

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10811 08</td>
<td>Low noise single frequency DFB fiber laser (Invited Paper)</td>
<td>[10811-6]</td>
</tr>
<tr>
<td>10811 09</td>
<td>Experimental study of mode instability in high power all-fiber amplifier under different pumping power distribution</td>
<td>[10811-7]</td>
</tr>
<tr>
<td>10811 0B</td>
<td>47 GHz narrow linewidth linear polarized fiber amplifier injected by a simple fiber oscillator laser seed source</td>
<td>[10811-9]</td>
</tr>
<tr>
<td>10811 0C</td>
<td>Mitigating stimulated brillouin scattering in fiber using tilted fiber Bragg grating</td>
<td>[10811-10]</td>
</tr>
<tr>
<td>10811 0D</td>
<td>All-fiber structure mid-infrared fiber gas laser source</td>
<td>[10811-11]</td>
</tr>
</tbody>
</table>

### SESSION 3  HIGH-POWER LASERS AND APPLICATIONS III

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10811 0F</td>
<td>Quasi-CW performance and reliability of dual laser bars on a micro-channel cooler</td>
<td>[10811-13]</td>
</tr>
<tr>
<td>10811 0G</td>
<td>Intracavity deformable mirror for the performance improvement of a passively Q-switched laser</td>
<td>[10811-14]</td>
</tr>
<tr>
<td>10811 0J</td>
<td>Sidelobe suppression of laser diode arrays by on-chip phase and amplitude manipulation</td>
<td>[10811-17]</td>
</tr>
</tbody>
</table>
### SESSION 4  HIGH-POWER LASERS AND APPLICATIONS IV

<table>
<thead>
<tr>
<th>Presentation ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10811 0L</td>
<td>500Hz high-energy laser for PLIF application</td>
<td>[10811-19]</td>
</tr>
<tr>
<td>10811 0M</td>
<td>Access to the ultrafast dynamics of molecules-laser interaction with high harmonic spectroscopy</td>
<td>[10811-20]</td>
</tr>
<tr>
<td>10811 0N</td>
<td>Relationship between the longitudinal-mode structure and the relative intensity noise properties of the laser</td>
<td>[10811-21]</td>
</tr>
</tbody>
</table>

### SESSION 5  HIGH-POWER LASERS AND APPLICATIONS V

<table>
<thead>
<tr>
<th>Presentation ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10811 0P</td>
<td>Efficient cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm</td>
<td>[10811-24]</td>
</tr>
<tr>
<td>10811 0Q</td>
<td>Multipass stretcher for chirped-pulse amplification</td>
<td>[10811-25]</td>
</tr>
<tr>
<td>10811 0U</td>
<td>Experimental characterization of a SESAM mode-locked Yb:YAG thin disk laser</td>
<td>[10811-29]</td>
</tr>
<tr>
<td>10811 0V</td>
<td>Suppression of stimulated Raman scattering in a monolithic fiber laser oscillator using chirped and tilted fiber Bragg gratings</td>
<td>[10811-30]</td>
</tr>
</tbody>
</table>

### POSTER SESSION

<table>
<thead>
<tr>
<th>Presentation ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10811 0W</td>
<td>Nanoseconds square pulses generation in a figure-of-eight Yb-doped fiber laser</td>
<td>[10811-31]</td>
</tr>
<tr>
<td>10811 11</td>
<td>Control of laser pulse waveform in longitudinally excited CO2 laser by adjustment of gas medium</td>
<td>[10811-36]</td>
</tr>
<tr>
<td>10811 15</td>
<td>Implementation of stochastic parallel gradient descent algorithm for coherent beam combining</td>
<td>[10811-40]</td>
</tr>
<tr>
<td>10811 16</td>
<td>Numerical analysis of the temperature field in HgCdTe detector by CW laser irradiation</td>
<td>[10811-41]</td>
</tr>
<tr>
<td>10811 17</td>
<td>Topological engineering of mode-locked fibre lasers: NALM/NALM2 technologies</td>
<td>[10811-42]</td>
</tr>
<tr>
<td>10811 18</td>
<td>Combined model of laser rate equation and Ginzburg-Landau equation for pulsed thulium-doped fiber laser</td>
<td>[10811-43]</td>
</tr>
<tr>
<td>10811 19</td>
<td>An all-reflective transient-grating based self-referenced spectral interferometry device for few-cycle laser pulses characterization</td>
<td>[10811-44]</td>
</tr>
</tbody>
</table>

iv
10811 1B  Intense broadband optical-vortex pulses generation using a hollow core fiber [10811-46]

10811 1G  High-power laser beam use in material connection [10811-51]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

A., Padmanabhan, 15
Bai, Lihua, 19
Bao, Yifan, 0W
C. L., Linsdai, 15
Cai, Haiwen, 08
Chang, Zhe, 0B
Chen, Deying, 0L
Chen, Dijun, 08
Chen, Junchi, 0Q
Chen, Li, 0F
Chen, Yetao, 0W
Chen, Yongqian, 0U
Chen, Zhonghao, 0J
Cui, Yulong, 0D, 0P
Dong, Jing, 0U
Fan, Rongwei, 0L
Fang, M., 05
Gervaziev, M. D., 17
Guo, Yongrui, 0N
Hu, Qihao, 0C, 0V
Hua, Weihong, 0D
Huang, Lei, 0G
Huang, Wei, 0P
Ivanenko, A. V., 17
Ji, Yinan, 0W
Jia, Dongfang, 0W
Jiang, Yungao, 0L
Jin, Yiling, 0W
Jing, Feng, 18
Jitsuno, Takahisa, 0B
Ke, L. T., 05
Kobtsev, S. M., 17
Kokhanovsky, A. Y., 17
Lan, Pengfei, 0M
Lei, Wu-hu, 16
Leng, Yuxin, 0Q
Li, Chengyu, 18
Li, R., 05
Li, Xudong, 0L
Li, Yanyan, 0Q
Li, Yue, 18
Li, Zhilian, 0P
Li, Zhao, 0W
Lin, Honghuan, 18
Lin, Lei, 19, 1B
Liu, Huasong, 0L
Liu, J. Q., 05
Liu, J. S., 05
Liu, Jun, 19, 1B
Liu, Le, 0C, 0V
Liu, Weixue, 0F
Liu, Zhixiang, 0L
Lu, Dan, 07
Lu, Huadong, 0N
Lu, Peixiang, 0M
Luo, Xuexue, 09
Lv, Xinlin, 0Q
M. S., Sooraj, 15
Ma, Lija, 0U
Ma, Yi, 0B
Mei, Feng, 0L
Peng, Kunchi, 0N
Peng, Wanjing, 0B
Peng, Yujie, 0Q
Qi, Aliyi, 0J
Qi, R., 05
Qian, Yefeng, 0U
Qin, Z. Y., 05
Qu, Hongwei, 0J
Qu, Ronghui, 08
Ren, Xiao-dong, 16
Shao, Beijie, 0Q
Shen, Xiong, 19
Si, Zhe, 19
Smirnov, S. V., 17
Srinivasan, B., 15
Su, Hongpeng, 0Q
Su, Jing, 0N
Sun, Chuang, 0G
Sun, Hongwei, 1G
Sun, Licheng, 0G
Sun, Xu, 0W
Sun, Yinrui, 0B
Tang, Chun, 08
Tang, Ni, 0D
Tao, Rumao, 09
Turitsyn, S. K., 17
Uno, Kazuyuki, 11
Venkitesh, D., 15
Wang, Boxue, 0F
Wang, C., 05
Wang, Meng, 0C, 0V
Wang, Peng, 1B
Wang, Pengfei, 0Q
Wang, W. T., 05
Symposium Committees

General Chairs

Maryellen Giger, President, SPIE and The University of Chicago (United States)
Qihuang Gong, President, Chinese Optical Society and Peking University (China)

General Co-chairs

Arthur Chiou, National Yang-Ming University (Taiwan, China)
Guangcan Guo, Past President, Chinese Optical Society and University of Science and Technology of China (China)
Zejin Liu, Vice President, Chinese Optical Society and National University of Defense Technology (China)

Technical Program Chairs

Ruxin Li, Vice President, Chinese Optical Society and Shanghai Institute of Optics and Fine Mechanics (China)
Xingde Li, Johns Hopkins University (United States)

Technical Program Co-chairs

Tianchu Li, National Institute of Metrology (China)
Wei Huang, Northwestern Polytechnical University (China)
Ying Gu, Vice President, Chinese Optical Society and PLA General Hospital (China)
Huilin Jiang, Changchun University of Science and Technology (China)

Local Organizing Committee Chair

Xu Liu, Secretary General, Chinese Optical Society and Zhejiang University (China)
Local Organizing Committee Co-chairs

Wenqing Liu, Vice President, Chinese Optical Society and Anhui Institute of Optics and Fine Mechanics (China)

Guobin Fan, China Academy of Engineering Physics (China)

Local Organizing Committee

Xiaomin Ren, Vice President, Chinese Optical Society and Beijing University of Posts and Telecommunications (China)

Suotang Jia, Vice President, Chinese Optical Society and Shanxi University (China)

Wenjie Wang, Vice President, Chinese Optical Society and Sunny Group Company, Ltd. (China)

Qingming Luo, Huazhong University of Science and Technology (China)

Ping Jia, Changchun Institute of Optics, Fine Mechanics and Physics (China)

Wei Zhao, Xi’an Institute of Optics and Precision Mechanics (China)

Yudong Zhang, Chengdu Branch, Chinese Academy of Sciences (China)

Ninghua Zhu, Institute of Semiconductors (China)

Yongtian Wang, Beijing Institute of Technology (China)

Xiaocong Yuan, Shenzhen University (China)

Limin Tong, Zhejiang University (China)

Weimin Chen, Chongqing University (China)

Yidong Huang, Tsinghua University (China)

Tiegen Liu, Tianjin University (China)

Zhiping Zhou, Peking University (China)

Changhe Zhou, Jinan University (China)

Yiping Cui, Southeast University (China)

Zhongwei Fan, Academy of Optoelectronics, CAS (China)

Xiaoqing Li, Tianjin University (China)

Yan Li, Deputy Secretary General, Chinese Optical Society and Peking University (China)

Caiwen Ma, Xi’an Institute of Optics and Precision Mechanics (China)

Xinliang Zhang, Huazhong University of Science and Technology (China)

Jianxin Chen, Fujian Normal University (China)

Yihua Hu, College of Electronic Engineering, National Univ. of Defense Technology (China)
Secretaries-General

Bo Gu, Deputy Secretary General, Chinese Optical Society (China)
Hong Yang, Deputy Secretary General, Chinese Optical Society and Peking University (China)

Executive Organizing Committee

David J. Bergman, Tel Aviv University (Israel)
Qionghai Dai, Tsinghua University (China)
Keisuke Goda, The University of Tokyo (Japan)
Qihuang Gong, Peking University (China)
Ying Gu, Chinese PLA General Hospital (China)
Guang-Can Guo, University of Science and Technology of China (China)
Byoung S. Ham, Gwangju Institute of Science and Technology (Korea, Republic of)
Sen Han, University of Shanghai for Science and Technology (China) and Suzhou H&L Instruments LLC (China)
Werner H. Hofmann, Technische Universität Berlin (Germany)
Minghui Hong, National University of Singapore (Singapore)
Bahram Jalali, University of California, Los Angeles (United States)
Shibin Jiang, AdValue Photonics, Inc. (United States)
Satoshi Kawata, Osaka University (Japan)
Tina E. Kidger, Kidger Optics Associates (United Kingdom)
Baojun Li, Jinan University (China)
Ming Li, Institute of Semiconductors (China)
Ruxin Li, Shanghai Institute of Optics and Fine Mechanics (China)
Xingde Li, Johns Hopkins University (United States)
Jian Liu, PolarOnyx, Inc. (United States)
Tiegen Liu, Tianjin University (China)
Yongfeng Lu, University of Nebraska-Lincoln (United States)
Qingming Luo, Huazhong University of Science and Technology (China)
Yuji Sano, ImPACT (Japan)
Yunlong Sheng, Université Laval (Canada)
Kebin Shi, Peking University (China)
Tsutomu Shimura, The University of Tokyo (Japan)
Upendra N. Singh, NASA Langley Research Center (United States)
Michael G. Somekh, The Hong Kong Polytechnic University (Hong Kong, China)
Yuguo Tang, Suzhou Institute of Biomedical Engineering and Technology (China)
Masahiko Tani, University of Fukui (Japan)
Kimio Tatsuno, Koga Research Institute, Ltd. (Japan)
Kevin K. Tsia, The University of Hong Kong (Hong Kong, China)
Kazumi Wada, Massachusetts Institute of Technology (United States)
Yongtian Wang, Beijing Institute of Technology (China)
Rongshi Xiao, Beijing University of Technology (China)
Hongxing Xu, Wuhan University (China)
Toru Yoshizawa, Tokyo University of Agriculture and Technology (Japan) and 3D Associates (Japan)
Changyuan Yu, The Hong Kong Polytechnic University (Hong Kong, China)
Chongxiu Yu, Beijing University of Posts and Telecommunications (China)
Xiao-Cong Yuan, Shenzhen University (China)
Xiaoyan Zeng, Huazhong University of Science and Technology (China)
Cunlin Zhang, Capital Normal University (China)
Song Zhang, Purdue University (United States)
Xi-Cheng Zhang, University of Rochester (United States)
Xinliang Zhang, Wuhan National Laboratory for Optoelectronics (China)
Xuping Zhou, Nanjing University (China)
Changhe Zhou, Shanghai Institute of Optics and Fine Mechanics (China)
Zhiping Zou, Peking University (China)
Dan Zhu, Huazhong University of Science and Technology (China)
Ning Hua Zhu, Institute of Semiconductors (China)
Conference Committee

Conference Chairs

Ruxin Li, Shanghai Institute of Optics and Fine Mechanics (China)
Upendra N. Singh, NASA Langley Research Center (United States)

Conference Program Committee

Willy L. Bohn, BohnLaser Consult (Germany)
Dianyuan Fan, Shanghai Institute of Optics and Fine Mechanics (China)
Mali Gong, Tsinghua University (China)
Shibin Jiang, AdValue Photonics, Inc. (United States)
Do-Kyeong Ko, Gwangju Institute of Science and Technology (Korea, Republic of)
Zejin Liu, National University of Defense Technology (China)
DeYuan Shen, Fudan University (China)
Robert F. Walter, Schafer Corporation (United States)
Shuangchun Wen, Shenzhen University (China)
Zuyan Xu, Technical Institute of Physics and Chemistry (China)
Jianquan Yao, Tianjin University (China)
Tai Hyun Yoon, Korea University (Korea, Republic of)
Jirong Yu, NASA Langley Research Center (United States)
Heping Zeng, East China Normal University (China)
Xiaomin Zhang, China Academy of Engineering Physics (China)
Shou-huan Zhou, Sichuan University (China)

Session Chairs

1 High Power Lasers and Applications I
Changho Zhou, Shanghai Institute of Optics and Fine Mechanics (China)

2 High Power Lasers and Applications II
Weiwei Liu, Nankai University (China)

3 High Power Lasers and Applications III
Baifei Shen, Shanghai Institute of Optics and Fine Mechanics (China)

4 High Power Lasers and Applications IV
Yuxin Leng, Shanghai Institute of Optics and Fine Mechanics (China)

5 High Power Lasers and Applications V
Pengfei Lan, Huazhong University of Science and Technology (China)