Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committee</td>
<td></td>
</tr>
</tbody>
</table>

UV-VISIBLE GENERATION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-03</td>
<td>High-power, continuous-wave, scalable, single-frequency 852nm laser source for 213nm generation</td>
<td>[10902-2]</td>
</tr>
<tr>
<td>10902-05</td>
<td>Single pass 7 watts continuous wave 532 nm generation by focusing optimized second harmonic generation in MgO:PPLN</td>
<td>[10902-4]</td>
</tr>
</tbody>
</table>

SUPERCONTINUUM SOURCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-07</td>
<td>3 W Mid-IR supercontinuum extended up to 4.6 μm based on an all-PM thulium doped fiber gain-switch laser seeding an InF3 fiber</td>
<td>[10902-6]</td>
</tr>
<tr>
<td>10902-09</td>
<td>Spectral and temporal stability of cascaded Raman based high power, octave spanning, continuous-wave, supercontinuum sources</td>
<td>[10902-8]</td>
</tr>
</tbody>
</table>

WAVEGUIDE SOURCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-0C</td>
<td>Miniaturized watt-level laser modules emitting in the yellow-green spectral range for biophotonic applications</td>
<td>[10902-11]</td>
</tr>
<tr>
<td>10902-0D</td>
<td>Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide</td>
<td>[10902-12]</td>
</tr>
<tr>
<td>10902-0E</td>
<td>UV laser source implementing an IR pump laser with multi-element ridge waveguides</td>
<td>[10902-13]</td>
</tr>
<tr>
<td>10902-0F</td>
<td>Generation of tunable visible light in periodically-poled nonlinear crystal waveguides (invited Paper)</td>
<td>[10902-14]</td>
</tr>
</tbody>
</table>

QUASI-PHASEMATCHED MATERIALS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-0G</td>
<td>Recent advances in sub-μm PPKTP for non-linear interactions with counter-propagating photons (invited Paper)</td>
<td>[10902-15]</td>
</tr>
<tr>
<td>10902-0I</td>
<td>Fabrication of a quasi-phase-matching stack of 53 GaAs plates for high-power mid-infrared wavelength conversion by use of room-temperature bonding</td>
<td>[10902-17]</td>
</tr>
</tbody>
</table>
OPTICAL PARAMETRIC DEVICES

10902 0L **Coherent combining of difference frequency generators: experimental demonstration and application to optical parametric oscillators** [10902-20]

10902 0M **Tunable and chirp free femtosecond signal pulses generated by a PPLN OPO pumped by Ytterbium fiber laser chirped pulses** [10902-21]

10902 0N **Fan-out periodically poled structures in Rb-doped KTiOPO₄ for continuously tunable QPM devices** [10902-22]

10902 0P **Adaptive pulse shaping for enhanced spectral broadening of high repetition rate, electro-optic frequency combs** [10902-24]

NOVEL CONCEPTS IN NONLINEAR OPTICS

10902 0T **Whispering gallery optical parametric oscillators: Just a scientific oddity? (Invited Paper)** [10902-28]

FREQUENCY COMB SOURCES

10902 0V **Simulated supercontinuum generation in water and the human eye** [10902-30]

10902 0W **Generation of broad spectral components from midwave infrared ultrashort pulse laser propagation through ZnSe and ZnS** [10902-31]

NEW NONLINEAR CONCEPTS AND DEVICES

10902 16 **Optical investigation to minimize the electron bunch arrival-time jitter between femtosecond laser pulses and electron bunches for laser-driven plasma wakefield accelerators** [10902-41]

10902 17 **Modified Z-scan technique using a segmented photodiode** [10902-42]
THZ GENERATION AND DETECTION

10902 18 Tunable narrowband THz generation in orientation patterned gallium phosphide for THz anisotropy identification (invited Paper) [10902-43]

10902 19 Time-resolved nonlinear ghost imaging: route to hyperspectral single-pixel reconstruction of complex samples at THz frequencies [10902-44]

10902 1A High-efficiency THz wave generation and detection using laser chaos and metal V-grooved waveguide [10902-45]

RAMAN LASERS

10902 1D Demonstration of input wavelength flexible cascaded Raman resonators based on the inclusion of a broadband distributed feedback reflector [10902-48]

10902 1F Raman transformation properties of partially coherent laser pulses in phosphorus-doped silica fibre [10902-50]

STIMULATED BRILLOUIN SCATTERING

10902 1G Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination [10902-51]

POSTER SESSION

10902 1J Compact and versatile OPG-OPA based on a periodically poled nonlinear crystal pumped by femtosecond Ytterbium fiber laser [10902-54]

10902 1L Influence of stimulated Raman scattering on random lasing [10902-56]

10902 1M Experimental study of the spectral width and flatness of a supercontinuum spectrum with several setups of optical fiber [10902-57]

10902 1N Simulations on nonlinear process in non-collinear phase-matching [10902-58]

10902 1O Nonlinear optical properties of “star type” triazotriphenylmethane dyes [10902-59]

10902 1Q Ultra-flattened chromatic dispersion in all-solid hybrid micro-structured optical fibers for mid-infrared light-wave generation [10902-61]

10902 1R Design and numerical investigation of a tapered tellurite step-index fiber for mid-IR supercontinuum generation [10902-62]
10902 1T Multi watt-level picosecond micro-laser sources in the yellow-green spectral range [10902-64]
10902 1U Bell inequality experiment for a high brightness time-energy entangled source [10902-65]
10902 1V Mid-infrared, single crystal, linear cavity optical parametric oscillators based on ZnGeP$_2$ [10902-66]
10902 1W Obtaining a broad spectrum source in the visible spectrum by means of 2 conventional thin core fibers [10902-67]
10902 1X Wavelength adjustability of PM-Yb-doped fiber laser based on FBGs for high power SHG generation [10902-68]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Afanador Delgado, S. M., 1O
Aller, Josh, 0E
Armard-Hudelot, Gaebriel, 0M, 1J
Aparan, Santosh, 1G
Arun, S., 09
Atrarsh, Hiroki, 01
Babych, O. S., 1L
Balasamy, V., 09, 1D, 1G
Banerjee, Sneha, 0P
Battle, Phil, 0E
Bege, Roland, 1T
Berthelot, T., 07
Bodin, L., 07
Bouillet, J., 07
Bourdon, P., 0L
Breunig, Ingo, 0T
Bugge, Rank, 1T
Buse, Karsten, 0T
Calvez, L., 07
Canallas, Carlota, 0G, 0N
Cartee, J-Y., 07
Castañeda Contreras, J., 1O
Chen, Xiaoahon, 1N
Child, Benjamin, 1U
Chiu Zarate, R., 1O
Chou, Ming-Hsien, 0S, 0D
Choudhury, Vishal, 09, 1D, 1G
Chowdhury, Enam, 0W
Chlouk, R., 0L
Coetzee, Robin, 0G
Cong, Zhenhua, 1N
Coic, S., 07
Dietz, Jonathan, 1U
Dobashi, Kazuma, 1X
Durécu, A., 0L
Enriquez Sánchez, C. J., 1O
Enslay, Trenton, 0W
Espaza Ramírez, K. M., 1O
Estudillo-Ayala, J. M., 1M, 1W
Fedorova, Ksenia A., 0R
Felice, David, 0C, 17
Ferdinandus, Manuel, 17
Floyd, Bertram M., 1U
Reysz, Bic, D., 0M, 1U
Reysz, Valerian, 1J
Furukawa, Yasunori, 03
Gengler, Jamie, 17
George, D., K., 18
Gervaziev, Mikhail, 1F
Godard, A., 0L
Hastings, Michael, 0W
Hawthorne, Justin T., 0E
Hernández-García, J. C., 1M, 1W
Hirashahi, Junji, 03, 1X
Hofmann, J., 0C
Hoshi, Masayuki, 1X
Hsu, Cheng-Wei, 0S, 0D
Hsu, Chen-Shao, 0S, 0D
Huang, Yu-Tai, 0D
Huss, G., 07
Imai, Koki, 1X
Ivanenko, Alexey, 1F
Iwao, K., 1A
Jacobs, Cobus, 1V
Józefczyk, Daniel, 0C, 1T
Kaga, Tsubasa, 0I
Kaltenbach, André, 1T
Kaneda, Yushi, 03
Katz, Evan J., 1U
Klahara, H., 1A
Kobtsev, Sergey, 1F
Koen, Wayne, 1V
Kokhanovsky, Alexey, 1F
Kolesnik, Miloslaw, 0W
Kozlov, Vladimir, 1B
Kurth, K., 1A
Kuwashima, F., 1A
Lai, Ju-Yu, 0S, 0D
Lakshmi, C. G., 1D
Lauréll, Fredrik, 0N
Lekki, John D., 1U
Li, Ping, 1N
Liebig, Carl, 17
Lijestrand, Charlotte, 0G
Li, Zhaohun, 1N
Lombard, L., 0L
Luo, Xing, 1Q, 1R
Makko, Satoshi, 1X
Marion-Rutz, V. F., 1O
Marble, Christopher B., 0V
Markelz, A. G., 1B
Mattifiello, S., 16
McNee, Ian, 18
Moloney, Jerome, 0W
Morikawa, O., 1A
Moris, Daniel, 1V
Nakajima, M., 1A
Conference Committee

Symposium Chairs

Beat Neuenschwander, Berner Fachhochschule Technik und Informatik (Switzerland)
Xianfan Xu, Purdue University (United States)

Symposium Co-chairs

Koji Sugioka, RIKEN Center for Advanced Photonics (Japan)
Reinhart Poprawe, Fraunhofer-Institut für Lasertechnik (Germany)

Program Track Chairs

Vladimir Ilchenko, GM Cruise LLC (United States)
Paul O. Leisher, Lawrence Livermore National Laboratory (United States)

Conference Chairs

Peter G. Schunemann, BAE Systems (United States)
Kenneth L. Schepler, CREOL, The College of Optics and Photonics, University of Central Florida (United States)

Conference Program Committee

Darrell J. Armstrong, Sandia National Laboratories (United States)
Carlota Canalias, KTH Royal Institute of Technology (Sweden)
Majid Ebrahim-Zadeh, ICFO - Institut de Ciències Fotòniques (Spain)
Baldemar Ibarra-Escamilla, Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico)
Rita D. Peterson, Air Force Research Laboratory (United States)
Wei Shi, Tianjin University (China)
Michael Vasilyev, The University of Texas at Arlington (United States)
Konstantin L. Vodopyanov, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
Vladislav V. Yakovlev, Texas A&M University (United States)

Session Chairs

1 UV-Visible Generation
Darrell J. Armstrong, Sandia National Laboratories (United States)

2 Supercontinuum Sources
Rita D. Peterson, Air Force Research Laboratory (United States)
3 Waveguide Sources
 Peter G. Schunemann, BAE Systems (United States)

4 Quasi-Phasematched Materials
 Kevin Zawilski, BAE Systems (United States)

5 Optical Parametric Devices
 Carlota Canalias, KTH Royal Institute of Technology (Sweden)

6 Novel Concepts in Nonlinear Optics
 Darrell J. Armstrong, Sandia National Laboratories (United States)

7 Frequency Comb Sources
 Kenneth L. Schepler, CREOL, The College of Optics and Photonics,
 University of Central Florida (United States)

8 Birefringent Nonlinear Crystals
 Rita D. Peterson, Air Force Research Laboratory (United States)

9 New Nonlinear Concepts and Devices
 Carlota Canalias, KTH Royal Institute of Technology (Sweden)

10 Thz Generation and Detection
 Peter G. Schunemann, BAE Systems (United States)

11 Raman Lasers
 Kenneth L. Schepler, CREOL, The College of Optics and Photonics,
 University of Central Florida (United States)

12 Stimulated Brillouin Scattering
 Kenneth L. Schepler, CREOL, The College of Optics and Photonics,
 University of Central Florida (United States)