Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII

Peter G. Schunemann
Kenneth L. Schepler
Editors

5–7 February 2019
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

Authors

ix

Conference Committee

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-3</td>
<td>High-power, continuous-wave, scalable, single-frequency 852nm laser source for 213nm generation</td>
<td>[10902-2]</td>
</tr>
<tr>
<td>10902-4</td>
<td>Single pass 7 watts continuous wave 532 nm generation by focusing optimized second harmonic generation in MgO:PPLN</td>
<td>[10902-4]</td>
</tr>
</tbody>
</table>

UV-VISIBLE GENERATION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-6</td>
<td>3 W Mid-IR supercontinuum extended up to 4.6 μm based on an all-PM thulium doped fiber gain-switch laser seeding an InF3 fiber</td>
<td>[10902-6]</td>
</tr>
<tr>
<td>10902-8</td>
<td>Spectral and temporal stability of cascaded Raman based high power, octave spanning, continuous-wave, supercontinuum sources</td>
<td>[10902-8]</td>
</tr>
</tbody>
</table>

SUPERCONTINUUM SOURCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-11</td>
<td>Miniaturized watt-level laser modules emitting in the yellow-green spectral range for biophotonic applications</td>
<td>[10902-11]</td>
</tr>
<tr>
<td>10902-12</td>
<td>Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide</td>
<td>[10902-12]</td>
</tr>
<tr>
<td>10902-13</td>
<td>UV laser source implementing an IR pump laser with multi-element ridge waveguides</td>
<td>[10902-13]</td>
</tr>
<tr>
<td>10902-14</td>
<td>Generation of tunable visible light in periodically-poled nonlinear crystal waveguides (invited Paper)</td>
<td>[10902-14]</td>
</tr>
</tbody>
</table>

WAVEGUIDE SOURCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902-15</td>
<td>Recent advances in sub-µm PPKTP for non-linear interactions with counter-propagating photons (invited Paper)</td>
<td>[10902-15]</td>
</tr>
<tr>
<td>10902-17</td>
<td>Fabrication of a quasi-phase-matching stack of 53 GaAs plates for high-power mid-infrared wavelength conversion by use of room-temperature bonding</td>
<td>[10902-17]</td>
</tr>
</tbody>
</table>
OPTICAL PARAMETRIC DEVICES

109020L Coherent combining of difference frequency generators: experimental demonstration and application to optical parametric oscillators [10902-20]

109020M Tunable and chirp free femtosecond signal pulses generated by a PPLN OPO pumped by Ytterbium fiber laser chirped pulses [10902-21]

109020N Fan-out periodically poled structures in Rb-doped KTiOPO₄ for continuously tunable QPM devices [10902-22]

109020P Adaptive pulse shaping for enhanced spectral broadening of high repetition rate, electro-optic frequency combs [10902-24]

NOVEL CONCEPTS IN NONLINEAR OPTICS

109020T Whispering gallery optical parametric oscillators: Just a scientific oddity? (Invited Paper) [10902-28]

FREQUENCY COMB SOURCES

109020V Simulated supercontinuum generation in water and the human eye [10902-30]

109020W Generation of broad spectral components from midwave infrared ultrashort pulse laser propagation through ZnSe and ZnS [10902-31]

NEW NONLINEAR CONCEPTS AND DEVICES

1090216 Optical investigation to minimize the electron bunch arrival-time jitter between femtosecond laser pulses and electron bunches for laser-driven plasma wakefield accelerators [10902-41]

1090217 Modified Z-scan technique using a segmented photodiode [10902-42]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10902 18</td>
<td>Tunable narrowband THz generation in orientation patterned gallium phosphide for THz anisotropy identification (invited Paper) [10902-43]</td>
</tr>
<tr>
<td>10902 19</td>
<td>Time-resolved nonlinear ghost imaging: route to hyperspectral single-pixel reconstruction of complex samples at THz frequencies [10902-44]</td>
</tr>
<tr>
<td>10902 1A</td>
<td>High-efficiency THz wave generation and detection using laser chaos and metal V-grooved waveguide [10902-45]</td>
</tr>
<tr>
<td>10902 1D</td>
<td>Demonstration of input wavelength flexible cascaded Raman resonators based on the inclusion of a broadband distributed feedback reflector [10902-48]</td>
</tr>
<tr>
<td>10902 1F</td>
<td>Raman transformation properties of partially coherent laser pulses in phosphorus-doped silica fibre [10902-50]</td>
</tr>
<tr>
<td>10902 1G</td>
<td>Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination [10902-51]</td>
</tr>
<tr>
<td>10902 1J</td>
<td>Compact and versatile OPG-OPA based on a periodically poled nonlinear crystal pumped by femtosecond Ytterbium fiber laser [10902-54]</td>
</tr>
<tr>
<td>10902 1L</td>
<td>Influence of stimulated Raman scattering on random lasing [10902-56]</td>
</tr>
<tr>
<td>10902 1M</td>
<td>Experimental study of the spectral width and flatness of a supercontinuum spectrum with several setups of optical fiber [10902-57]</td>
</tr>
<tr>
<td>10902 1N</td>
<td>Simulations on nonlinear process in non-collinear phase-matching [10902-58]</td>
</tr>
<tr>
<td>10902 1O</td>
<td>Nonlinear optical properties of “star type” triazotriphenylmethane dyes [10902-59]</td>
</tr>
<tr>
<td>10902 1Q</td>
<td>Ultra-flattened chromatic dispersion in all-solid hybrid micro-structured optical fibers for mid-infrared lightwave generation [10902-61]</td>
</tr>
<tr>
<td>10902 IR</td>
<td>Design and numerical investigation of a tapered tellurite step-index fiber for mid-IR supercontinuum generation [10902-62]</td>
</tr>
</tbody>
</table>
Multi watt-level picosecond micro-laser sources in the yellow-green spectral range

Bell inequality experiment for a high brightness time-energy entangled source

Mid-infrared, single crystal, linear cavity optical parametric oscillators based on ZnGeP₂

Obtaining a broad spectrum source in the visible spectrum by means of 2 conventional thin core fibers

Wavelength adjustability of PM-Yb-doped fiber laser based on FBGs for high power SHG generation
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...02, followed by 10-1Z, 20-2Z, etc.

Afanador Delgado, S. M., 10
Aller, Josh, 0E
Amlard-Hudebäne, Gabriel, 0M, 1J
Aparanij, Santosh, 1G
Arun, S., 09
Atarashih, Hiroki, 01
Babych, O. S., 1L
Bala swamy, V., 09, 1D, 1G
Banerjee, Sneha, 0P
Battle, Phil, 0E
Bege, Roland, 1T
Berthelot, T., 07
Bodin, L., 07
Boullet, J., 07
Bourdou, P., 0L
Breunig, Ingo, 0T
Bugge, Rank, 1T
Buse, Karsten, 0T
Calvez, L., 07
Canillas, Carlota, 0G, 0N
Carrée, J.-Y., 07
Castañeda Contreras, J., 1O
Chen, Xiaohan, 1N
Child, Benjamin, 1U
Chiu Zarate, R., 1O
Chou, Ming-Hsien, 0S, 0D
Choudhury, Vishal, 09, 1D, 1G
Chowdhury, Enam, 0W
Choulki, R., 0L
Coetzee, Reaan, 0G
Cong, Zhenhua, 1N
Cozić, S., 07
Dietz, Jonathan, 1U
Dobashi, Kazuma, 1X
Du Récu, A., 0L
Enriquez Sánchez, C. J., 10
Enslay, Trenton, 0W
Espana Ramírez, K. M., 10
Estudillo-Ayala, J. M., 1M, 1W
Fedorova, Ksenia A., 0F
Felse, David, 0C, 1T
Ferdinandus, Manuel, 17
Floyd, Bertram M., 1U
Reysz, Bűc, 0M, 1U
Reysz, Valerian, 1J
Furukawa, Yasunori, 03
Gengler, Jamie, 17
George, D. K., 18
Gervazlev, Mikhail, 1F
Godard, A., 0L
Hastings, Michael, 0W
Hawthorne, Justin T., 0E
Hernández-García, J. C., 1M, 1W
Hirashita, Junji, 03, 1X
Hofmann, J., 0C
Hosh, Masayuki, 1X
Hsu, Cheng-Wei, 05, 0D
Hsu, Chen-Shao, 05, 0D
Huang, Yu-Tai, 0D
Huss, G., 07
Imai, Koichi, 1X
Ivanenko, Alexey, 1F
Iwao, K., 1A
Jacobs, Cobus, 1V
Júreguí-Vázquez, D., 1M, 1W
Jedrzejczyk, Daniel, 0C, 1T
Kaga, Tsubasa, 01
Kaltenbach, André, 1T
Kaneda, Yushi, 03
Kat, Evan J., 1U
Kihara, H., 1A
Kobtsev, Sergey, 1F
Koen, Wayne, 1V
Kokhanovskiy, Alexey, 1F
Kolesik, Miroslav, 0W
Kozlov, Vladimir, 18
Kulthara, K., 1A
Kuwashima, F., 1A
Lai, Ju-Yu, 05, 0D
Lakshm, C. G., 1D
Laurell, Fredrik, 0N
Lekki, John D., 1U
Li, Ping, 1N
Löbög, Carl, 17
Liljestrand, Charlotte, 0G
Liu, Zhaojun, 1N
Lombard, L., 0L
Luo, Xing, 1Q, 1R
Malolo, Satoshi, 1X
Marion-Rutz, V. F., 1O
Marble, Christopher B., 0V
Markelz, A. G., 18
Mattiello, S., 16
McNee, Ian, 18
Moloney, Jerome, 0W
Morikawa, O., 1A
Morris, Daniel, 1V
Nakajima, M., 1A
Conference Committee

Symposium Chairs
- Beat Neuenschwander, Berner Fachhochschule Technik und Informatik (Switzerland)
- Xianfan Xu, Purdue University (United States)

Symposium Co-chairs
- Koji Sugioka, RIKEN Center for Advanced Photonics (Japan)
- Reinhart Poprawe, Fraunhofer-Institut für Lasertechnik (Germany)

Program Track Chairs
- Vladimir Ilchenko, GM Cruise LLC (United States)
- Paul O. Leisher, Lawrence Livermore National Laboratory (United States)

Conference Chairs
- Peter G. Schunemann, BAE Systems (United States)
- Kenneth L. Schepler, CREOL, The College of Optics and Photonics, University of Central Florida (United States)

Conference Program Committee
- Darrell J. Armstrong, Sandia National Laboratories (United States)
- Carlota Canalias, KTH Royal Institute of Technology (Sweden)
- Majid Ebrahim-Zadeh, ICFO - Institut de Ciències Fotòniques (Spain)
- Baldemar Ibarra-Escamilla, Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico)
- Rita D. Peterson, Air Force Research Laboratory (United States)
- Wei Shi, Tianjin University (China)
- Michael Vasilyev, The University of Texas at Arlington (United States)
- Konstantin L. Vodopyanov, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
- Vladislav V. Yakovlev, Texas A&M University (United States)

Session Chairs
1. UV-Visible Generation
 - Darrell J. Armstrong, Sandia National Laboratories (United States)
2. Supercontinuum Sources
 - Rita D. Peterson, Air Force Research Laboratory (United States)
3 Waveguide Sources
 Peter G. Schunemann, BAE Systems (United States)

4 Quasi-Phasematched Materials
 Kevin Zawilski, BAE Systems (United States)

5 Optical Parametric Devices
 Carlota Canalias, KTH Royal Institute of Technology (Sweden)

6 Novel Concepts in Nonlinear Optics
 Darrell J. Armstrong, Sandia National Laboratories (United States)

7 Frequency Comb Sources
 Kenneth L. Schepler, CREOL, The College of Optics and Photonics, University of Central Florida (United States)

8 Birefringent Nonlinear Crystals
 Rita D. Peterson, Air Force Research Laboratory (United States)

9 New Nonlinear Concepts and Devices
 Carlota Canalias, KTH Royal Institute of Technology (Sweden)

10 Thz Generation and Detection
 Peter G. Schunemann, BAE Systems (United States)

11 Raman Lasers
 Kenneth L. Schepler, CREOL, The College of Optics and Photonics, University of Central Florida (United States)

12 Stimulated Brillouin Scattering
 Kenneth L. Schepler, CREOL, The College of Optics and Photonics, University of Central Florida (United States)