Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII

James G. Fujimoto
Joseph A. Izatt

Editors

3–6 February 2019
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
Wasatch Photonics (United States)

Published by
SPIE

Volume 10867
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
<td>ix Conference Committee</td>
</tr>
<tr>
<td></td>
<td>ADVANCES IN TECHNOLOGY I</td>
<td></td>
</tr>
<tr>
<td>10867 04</td>
<td>Enhanced depth penetration by dual-axis optical coherence tomography [10867-3]</td>
<td></td>
</tr>
<tr>
<td>10867 06</td>
<td>Tunable 1060nm VCSEL co-packaged with pump and SOA for OCT and LiDAR [10867-5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUNCTIONAL OCT</td>
<td></td>
</tr>
<tr>
<td>10867 0D</td>
<td>Measuring tissue dispersion using the cross-correlation of half-spectrum optical coherence tomography images [10867-12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPHTHALMOLOGY I</td>
<td></td>
</tr>
<tr>
<td>10867 0F</td>
<td>3D cellular imaging of the cornea with Gabor-domain optical coherence microscopy [10867-14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCM AND FULL FIELD</td>
<td></td>
</tr>
<tr>
<td>10867 0U</td>
<td>Line-field confocal optical coherence tomography [10867-29]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADVANCES IN TECHNOLOGY II</td>
<td></td>
</tr>
<tr>
<td>10867 14</td>
<td>Development of real-time multimodal OCT with manual operation capabilities and emergence of its applications in clinical practice [10867-39]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMAGE AND SIGNAL PROCESSING</td>
<td></td>
</tr>
<tr>
<td>10867 1M</td>
<td>Deep-learning based automated instrument tracking and adaptive-sampling of intraoperative OCT for video-rate volumetric imaging of ophthalmic surgical maneuvers [10867-57]</td>
<td></td>
</tr>
</tbody>
</table>
Automated layer segmentation of bladder OCT images for enhanced detection of transitional cell carcinoma [10867-60]

Motion artifact removal of optical coherence tomography angiography based on tensor voting [10867-62]

NEUROSCIENCE

In utero optical coherence tomography reveals changes in murine embryonic brain vasculature after prenatal cannabinoid exposure [10867-68]

ELASTOGRAPHY

Optical coherence elastography reveals the changes in cardiac tissue biomechanical properties after myocardial infarction in a mouse model [10867-82]

Thermo-elastic optical coherence tomography [10867-83]

POSTERS I: OCT TECHNOLOGY

Optic axis determination in SU(2) Jones formalism [10867-86]

Complex fast phase unwrapping method for Doppler OCT [10867-87]

Volumetric absolute blood flow measurement with fully connected vasculature network using Doppler optical coherence tomography [10867-89]

OCT spectrometer calibration using B-scan Doppler shift [10867-90]

Application of Bessel beam from deep seated negative axicon in optical coherence tomography of tissue structure [10867-94]

Upper limit for angular compounding speckle reduction [10867-95]

Long axial range swept-source OCT instrument enhanced by complex master-slave processing [10867-100]

Normalized field autocorrelation function-based optical coherence tomography 3D angiography [10867-101]

Employing the phase in master slave interferometry [10867-102]

High resolution line-field SD-OCT with 2.5kHz frame rate for cellular resolution imaging of biological tissue [10867-104]
Swept wavelength semiconductor laser of the red spectral range [10867-105]

Temperature stabilized phase reference for MEMS based swept sources [10867-106]

Evaluation of a commercial-grade camera for line field spectral-domain optical coherence tomography [10867-108]

POSTERS II: IMAGE PROCESSING

Ghosting artifact reduction of polarization sensitive optical coherence tomography images through wavelet-FFT filtering [10867-111]

Shadow rendering for improved volumetric visualization in real time 4D-OCT [10867-113]

POSTERS II: CLINICAL AND RESEARCH APPLICATIONS

Optimization of a SS-OCT with a focus tunable lens for enhanced visualization of ocular opacities [10867-119]

Multimodal optical imaging as breast cancer margins assessment methods [10867-121]

Automatic identification of metastatic lymph nodes in OCT images [10867-123]

Polarization-sensitive swept-source optical coherence tomography for investigating depth, birefringence, depolarization and orientation of collagen structure of human cervix tissue [10867-124]

3D high-resolution subsurface fingerprint imaging using superresolution optical coherence tomography [10867-129]

Index of refraction estimation using dual-angle optical coherence tomography [10867-135]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Andreeva, Ekatherina V., 2Y
Anikeev, Andrei S., 2Y
Anumba, Diluchukwu O., 3H
Aoki, Nobuyori, 2F
Artal, Pablo, 3E
Atla, Waltid, 06, 22
Azmian, Hicham, 0U
Boag, Sarfaraz, 3M
Bizheva, Kostadinka, 2X
Boas, David A., 2U
Bousi, Evgenia, 0D
Bradu, Adrian, 2T, 2V, 31
Byers, R. A., 33
Canavesi, Cristina, 0F
Chamorovskiy, Alexander, 2Y
Chen, Yiwei, 3H
Choe, Youngwoon, 34
Chu, Kengyeh K., 04
Chu, Steven, 20
Cogliati, Andrea, 0F
Davis, Arthur, 0U
de la Zerda, Adam, 20
Diaz-Douton, Fernando, 3E
Draxinger, Wolfgang, 2C
Du, Congwu, 1P, 1R, 2I
Dubois, Arnaud, 0U
Eliagin, Vadim V., 3F
El-Haddad, Mohamed T., 1M
Erdener, Sefik Evren, 2U
Fauchart, Mathis, 31
Ford, Tim, 06
Gelikonov, Grigory V., 3F
Gladkova, Natalia D., 3F
Gorczynska, I., 2G
Grulkowski, Ireneusz, 3E
Gu, Wenqing, 3G
Gubarkova, Ekaterina V., 3F
Güell, José Luis, 3E
Gupta, P., 2N
Han, Le, 2X
Hindman, Holly B., 0F
Hoang, Nancy T., 1M
Hori, Tomoki, 2F
Horikoshi, Kenji, 2F
Hosseiaee, Zohreh, 2X
Hou, Fang, 3G
Huber, Robert, 2C
Hyeon, Min Gyu, 34
Ifchenko, Stepan N., 2Y
Jabbour, Joey, 06
Jaillon, Franck, 2F
Jeong, Hyeonseog, 34
Jiménez-Villar, Alfonso, 3E
Johnson, Bart, 06, 22
Kemp, Nate, 06
Kim, Beop-Min, 34
Kim, Hyung-Jin, 34
Kouka, Amur, 1X
Kuznetsov, Mark, 06
Kuznetsov, Sergei S., 3F
Larin, Kirill V., 1X, 2B
Larina, Irina V., 2B
Leach, John, 2B
Leveccq, Olivier, 0U
Li, Ang, 1P, 1R, 2I
Li, Wei, 3H
Liang, Yanmei, 3G
Liu, Chih-Hao, 1X, 2B
Lobintsov, Andrei A., 2Y
Mallon, Ed, 06, 22
Malone, Joseph D., 1M
Manzanera, Silvestre, 3E
Marques, Manuel J., 2T, 31
Martin, James F., 2B
Matcher, Stephen J., 33, 3H
Melendez, Carlos, 06, 22
Mielus, Armanda, 0F
Miranda, Rajesh C., 1X
Moiseev, Alexander A., 3F
Mompean, Juan, 3E
Mondal, S., 2N
Narice, Brenda F., 3H
Ogien, Jonas, 0U
Oshima, Susumu, 2F
Palacios, Diego, 3M
Pan, Yinglian, 1P, 1R, 2I
Pandey, Amit, 2N
Pavlova, Nadezhda P., 3F
Perrot, Jean-Luc, 0U
Pfeiffer, Tom, 2C
Pliotou, Christos, 0D, 3S
Pijewski, E., 2G
Pinis, Costas, OD, 3S
Podoleanu, Adrian, 2T, 2V, 31
Pujol, Jaume, 3E
Qi, Yue, 0F
Paghunathan, Raksha, 1X
Rippy, Justin, 2B

vii
Rivet, Sylvain, 2T, 2V
Rodríguez Aramendía, Ana, 3E
Rolland, Jannick P., 0F
Shen, Kai, 3M
Shidlovski, Vladimir R., 2Y
Shramenko, Mikhail V., 2Y
Singh, Mannmohan, 1X, 2B
Siret, David, 0U
Sirotkina, Marina A., 3F
Stone, Jonathon J., 0F
Sugiyama, Satoshi, 2F
Suzuki, Daisuke, 2F
Szklumowski, M., 2G
Tan, Bingyao, 2X
Tang, Jianbo, 2U
Tao, Yuankai K., 1M
Tipple, Dean, 2Z
Tiwari, U., 2N
Totani, Kota, 2F
Vairagi, K., 2N
van Beusekom, Heleen, 2C
van der Steen, Antonius F. W., 2C
van Soest, Gijs, 2C
Vorontsov, Alexey Yu., 3F
Vorontsov, Dmitry A., 3F
Wang, Hui, 2J
Wang, Michael R., 3M
Wang, Shang, 2B
Wang, Tianshi, 2C
Wax, Adam, 04
Whitney, Peter, 06, 2Z
Wieser, Wolfgang, 2C
Winetraub, Yonatan, 2O
Woo, Seungbum, 06
Wu, Chris, 2O
Xue, Weikai, 0U
Yakubovich, Sergei D., 2Y
Yamamura, Masahiro, 2F
Yang, Zhian, 3G
Yoon, Changsik, 0F
Yu, Yang, 3G
Zagaynova, Elena V., 3F
Zhao, Yang, 04
Zhao, Yunqin, 2J
Zouvani, Ioanna, 0D
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School (United States)

Symposium Co-chairs

Jennifer K. Barton, The University of Arizona (United States)
Wolfgang Drexler, Medical University of Vienna (Austria)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
Joseph A. Izatt, Duke University (United States)

Conference Program Committee

Peter E. Andersen, Technical University of Denmark (Denmark)
Kostadinka Bizheva, University of Waterloo (Canada)
Stephen A. Boppart, Beckman Institute for Advanced Science and Technology (United States)
Zhongping Chen, Beckman Laser Institute and Medical Clinic (United States)
Johannes de Boer, Vrije Universiteit Amsterdam (Netherlands)
Wolfgang Drexler, Medical University of Vienna (Austria)
Grigory V. Gelikonov, Institute of Applied Physics (Russian Federation)
Christoph K. Hitzenberger, Medical University of Vienna (Austria)
Robert A. Huber, Universität zu Lübeck (Germany)
Rainer A. Leitgeb, Medical University of Vienna (Austria)
Xingde Li, Johns Hopkins University (United States)
Yingtian Pan, Stony Brook University (United States)
Adrian Gh. Podoleanu, University of Kent (United Kingdom)
Andrew M. Rollins, Case Western Reserve University (United States)
Marinko V. Sarunic, Simon Fraser University (Canada)
Guillermo J. Tearney, Wellman Center for Photomedicine (United States)
Valery V. Tuchin, Saratov State University (Russian Federation), Tomsk State University (Russian Federation), and Institute of Precision Mechanics and Control (Russian Federation)
Ruikang K. Wang, University of Washington (United States)
Maciej Wojtkowski, Nicolaus Copernicus University (Poland)
Yoshiaki Yasuno, University of Tsukuba (Japan)

Session Chairs

1 Advances in Technology I
 James G. Fujimoto, Massachusetts Institute of Technology (United States)

2 Functional OCT
 Joseph A. Izatt, Duke University (United States)

3 Ophthalmology I
 Wolfgang Drexler, Medizinische Universität Wien (Austria)

4 Intravascular, Pulmonary and GI
 Robert A. Huber, Universität zu Lübeck (Germany)

5 OCM and Full Field
 Maciej Wojtkowski, Nicolaus Copernicus University (Poland)

6 Advances in Technology II
 Peter E. Andersen, DTU Fotonik (Denmark)

7 Ophthalmology II
 Adrian Gh. Podoleanu, University of Kent (United Kingdom)

8 OCTA and Spectroscopic OCT
 Stephen A. Boppart, Beckman Institute for Advanced Science and Technology (United States)

9 Image and Signal Processing
 Yingtian Pan, Stony Brook University (United States)

10 Neuroscience
 Xingde Li, Johns Hopkins University (United States)

11 Adaptive Optics
 Alexander A. Moiseev, Institute of Applied Physics (Russian Federation)

12 Elastography
 Yoshiaki Yasuno, University of Tsukuba (Japan)