Laser Resonators, Microresonators, and Beam Control XXI

Alexis V. Kudryashov
Alan H. Paxton
Vladimir S. Ilchenko
Editors

4–7 February 2019
San Francisco, California, United States

Sponsored and Published by
SPIE
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510624504

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-first publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
- the first five digits correspond to the SPIE volume number.
- the last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, OA, OB ... OZ, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>MICRORESONATORS IN NOVEL DEVICES AND TOPOLOGIES I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 02</td>
</tr>
<tr>
<td>10904 03</td>
</tr>
<tr>
<td>10904 06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICRORESONATORS AND FREQUENCY COMBS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 0C</td>
</tr>
<tr>
<td>10904 0D</td>
</tr>
<tr>
<td>10904 0G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICRORESONATORS AND SOLITONS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 0J</td>
</tr>
<tr>
<td>10904 0K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICRORESONATORS AND SOLITONS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 0M</td>
</tr>
<tr>
<td>10904 0O</td>
</tr>
<tr>
<td>10904 0P</td>
</tr>
<tr>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>10904 0S</td>
</tr>
<tr>
<td>10904 0V</td>
</tr>
<tr>
<td>10904 0Z</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10904 13</td>
</tr>
<tr>
<td>10904 16</td>
</tr>
<tr>
<td>10904 17</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10904 1A</td>
</tr>
<tr>
<td>10904 1C</td>
</tr>
<tr>
<td>10904 1D</td>
</tr>
</tbody>
</table>
BEAM SHAPING I

<table>
<thead>
<tr>
<th>10904 1G</th>
<th>Beam shaping for ultrafast materials processing (invited Paper) [10904-50]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 1H</td>
<td>High power laser mode conversion with volume phase elements recorded in PTR glass [10904-51]</td>
</tr>
<tr>
<td>10904 1I</td>
<td>Focusing laser beam through pinhole using bimorph deformable mirror [10904-52]</td>
</tr>
</tbody>
</table>

BEAM SHAPING II

<table>
<thead>
<tr>
<th>10904 1K</th>
<th>Stacked-actuators deformable mirror vs bimorph mirror for laser beam shaping [10904-54]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 1L</td>
<td>Design and analysis of binary fan-out gratings based on step-transition perturbation approach [10904-55]</td>
</tr>
<tr>
<td>10904 1M</td>
<td>Machine learning aided phase retrieval algorithm for beam splitting with an LCoS-SLM [10904-56]</td>
</tr>
</tbody>
</table>

BEAM COMBINING, MODE CONTROL, BEAM DIAGNOSTICS

<table>
<thead>
<tr>
<th>10904 1N</th>
<th>Kramers-Kronig self-phasing effect in passive beam combining resonators (invited Paper) [10904-57]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 1P</td>
<td>Intracavity second harmonic generation for higher-order laser modes [10904-59]</td>
</tr>
<tr>
<td>10904 1R</td>
<td>Novel method to mitigate ghost images in laser beam diagnostic and laser vision systems (invited Paper) [10904-62]</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>10904 1T</th>
<th>Numerical and experimental study of the dynamics of cross polarization coupling in a single whispering-gallery microresonator [10904-65]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10904 1U</td>
<td>Non-resonant operation of microcavity Brillouin lasers [10904-66]</td>
</tr>
<tr>
<td>10904 1V</td>
<td>Tapered hollow annular core fiber coupled whispering-gallery mode microsphere resonators [10904-67]</td>
</tr>
<tr>
<td>10904 1W</td>
<td>Sensing of multiple parameters with whispering gallery mode optical fiber micro-resonators [10904-68]</td>
</tr>
</tbody>
</table>
High power Nd:YVO₄-KGW conical refraction laser [10904-69]

Conical refraction lasing in a Nd:YVO₄ laser with a conerefringent KGW element [10904-71]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Akbari, R., 1Z
Aray, Ayda, 16
Arjmand, Mojtaba, 16
Armani, Andrea M., 06, 1A
Asano, Motoki, 0G
Baldini, Francesco, 16, 17
Barucci, Andrea, 16
Bell, Teboho, 1P
Bennichi, Simone, 16
Billen, Igor A., 02, 0K
Bouchand, Romain, 0J, 0O
Brasch, Victor, OD
Breunig, Ingo, 03, 0D
Buse, Karsten, 03, 0D
Calvez, S., 0V
Chembo, Y. K., 0C
Chen, Dongyu, 1A
Chiappini, Andrea, 17
Chiavaioli, Francesco, 17
Choi, Hyungwoo, 06
Daugey, T., 0C
Decanini, Dominique, 0Z
Diallo, S., 0C
Dietz, Barbara, OZ
Dürer-Akam, Ivan, 1H
Duméige, Yannick, 16
Dyachenko, Pavel, 1L
Falconi, Mauro, C, 17
Farneti, Daniele, 16, 17
Farrell, Gerald, 1W
Fedorova, K. A., 1X, 1Z
Fernandez, A., 0V
Finken, Daniël, 1G
Fotiadi, Andrei A., 1U
Frigenti, Gabriele, 16
Fujii, Shun, 0M
Galaktionov, Ilya, 11, 1K
Galiev, R. R., 0K
Gambin, Vincent, 1A
Glebov, Leonid, 1H
Gorodetsky, Michael L., 02, 0K, 0O
Gorodnitsky, A. S., 0K
Grigas, Alain, 0Z
Grossman, Daniel Günther, 1G
Gülday, Melissa A., 0Z
Güterrez, N., 0V
Haas, Gil, 1R
Hale, Evan, 1H
Hellburt, Julian, 1G
Hermeschmidl, Andreas, 1L
Herr, Simon J., 0D
Herr, Tobias, 0D
Howlader, C., 1X, 1Z
Ikuta, Rikizo, 0G
Imoto, Nobuyuki, 0G
Jenne, Michael, 1G
Jeyaselvan, Vadivukkarasi, 0S
Jia, Yuechen, 0D
K., Nagarjun, 0S
Kalber, Myriam, 1G
Karpov, Maxim, 0O
Kavungal, Vehnru, 1W
Ke, Lin, 1D, 1T
Kedrowski, Thomas, 1M
Kim, Dong Cheon, 1L
Kippenberg, Tobias J., 0J, 0O
Knei, Tetsuo, 17
Kleiner, Jonas, 1G
Kompan, Fedor, 1H
Kondratiev, Nikita M., 02, 0K
Koptyaev, S., 0K
Korobko, Dmitry A., 1U
Kovach, Andre, 1A
Kudryashov, Alexei, 11, 1K
Kumkar, Matte, 1G
Kunkel, W. Minster, 1N
Lafargue, Clément, 0Z
Laneve, Daan, 17
Lasagni, André, 1M
Lebental, Mélanie, 0Z
Lecomte, Steve, 0D
Leger, James R., 1N
Lihachev, Grigory, 0O
Llopis, O., 0V
Lobanov, Valery E., 02, 0K
Lucas, Erwan, 0J, 0O
Major, A., 1X, 1Z
Mallik, Anu Kumar, 1W
Matsko, Andrey B., 0P
Merolla, J-M., 0C
Mikhailov, Dmitry, 1M
Niklit, Ralf, 1M
Nadimi, M., 1X
Nagabal, Virginie, 17
Ngcobo, Sandile, 1P
Nikitin, Alexander, 11, 1K
Nunzi Conti, Gualtiero, 16, 17
Obizud, Ewelina, 0D
Palma, Giuseppe, 17
Pavlov, Nikolay G., 0K, 0O
Pelli, Stefano, 16
Piveteau, A., 0C
Poust, Sumiko, 1A
Prudenzano, Francesco, 17
Rafailov, E.U., 1X, 1Z
Raj, Piyush, 0S
Raja, Arslan S., 0O
Rajagopal, Sreekul, 1D, 1T
Righini, Giancarlo C., 16
Rosenberger, A. T., 1C, 1D, 1T
Rukosuev, Alexey, 1I, 1K
Samarilán, Vadim, 1I, 1K
Scaggs, Michael, 1R
Scaletti, Costanzo, 17
Schaaf, Toralf, 1L
Selvaraja, Shankar Kumar, 0S
Semenova, Yuliya, 1W
Sheldakova, Julia, 1I, 1K
Shen, Xiaojin, 0S
Shitikov, Artem E., 02
Sokolovskii, G.S., 1X, 1Z
Sokolovskii, S.G., 1U
Soltani, Soheil, 1A
Song, Yalei, 0Z
Soša, Silva, 16, 17
Sukachev, Denis D., 13
Supradeepa, V.R., 0S
Suzuki, Ryo, 0M
Szabados, Jan, 0D
Taheil, Hasein, 0P
Tanabe, Takasumi, 0M
Tari, Ryoya, 0G
Tillkorn, Christoph, 1G
Toporovsky, Vladimir, 1K
Voloshin, Andrey S., 02, 0K
Wang, Jiawei, 1V
Wang, Tingyun, 1V
Waiifanant, T., 1X
Weng, Wenle, 0J
Xiao, Hai, 1V
Yamamoto, Takashi, 0G
Yang, Yong, 1V
Zhang, Xiaobei, 1V
Zhou, Baifan, 1M
Zimmermann, Felix, 1G
Zolotovskii, Igor O., 1U
Conference Committee

Symposium Chairs
 Beat Neuenschwander, Berner Fachhochschule Technik und Informatik (Switzerland)
 Xianfan Xu, Purdue University (United States)

Symposium Co-chairs
 Koji Sugioka, RIKEN Center for Advanced Photonics (Japan)
 Reinhart Poprawe, Fraunhofer-Institut für Lasertechnik (Germany)

Program Track Chairs
 Vladimir S. Ilchenko, GM Cruise LLC (United States)
 Paul O. Leisher, Lawrence Livermore National Laboratory (United States)

Conference Chairs
 Alexis V. Kudryashov, Institute of Geosphere Dynamics (Russian Federation)
 Alan H. Paxton, Air Force Research Laboratory (United States)
 Vladimir S. Ilchenko, GM Cruise LLC (United States)

Conference Co-chair
 Andrea M. Armani, The University of Southern California (United States)

Conference Program Committee
 Lutz Aschke, TRUMPF Lasertechnik GmbH (Germany)
 Gaurav Bahl, University of Illinois (United States)
 Paul E. Barclay, University of Calgary (Canada)
 Hui Cao, Yale University (United States)
 Yanne K. Chembo, University of Maryland, College Park (United States)
 Jean-Claude M. Diels, The University of New Mexico (United States)
 Hans Joachim Bichler, Technische Universität Berlin (Germany)
 Andrew Forbes, University of the Witwatersrand, Johannesburg (South Africa)
 Pierre Gaillanneau, INO (Canada)
 Michael L. Gorodetsky, Russian Quantum Center (Russian Federation)
 Thomas Graf, Universität Stuttgart (Germany)
 Qing Gu, The University of Texas at Dallas (United States)
 Stefan Hambücker, INGENERIC GmbH (Germany)
Tobias J. Kippenberg, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
James R. Leger, University of Minnesota, Twin Cities (United States)
Andrey B. Matsko, OEdwaves, Inc. (United States)
Gualtiero Nunzi Conti, Istituto di Fisica Applicata 'Nello Carrara' (Italy)
Andrew W. Poon, Hong Kong University of Science and Technology
(Hong Kong, China)
Michael J. Scaggs, Haas Laser Technologies, Inc. (United States)
Julia V. Sheidakova, Russian Academy of Sciences (Russian Federation)
Haiyin Sun, ChemImage Corporation (United States)
Yun-Feng Xiao, Peking University (China)
Lei Xu, Fudan University (China)
Jonathan M. Ward, Okinawa Institute of Science and Technology
Graduate University (Japan)
Lan Yang, Washington University in St. Louis (United States)

Session Chairs
1. Microresonators in Novel Devices and Topologies I
 Vladimir S. Ilchenko, GM Cruise LLC (United States)
2. Microresonators in Sensors
 Andrea M. Armani, The University of Southern California (United States)
3. Microresonators and Frequency Combs I
 Andrey B. Matsko, OEdwaves, Inc. (United States)
4. Microresonators and Solitons I
 Tobias J. Kippenberg, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
5. Microresonators and Solitons II
 Yanne K. Chembo, University of Maryland, College Park (United States)
6. Microresonators and Frequency Combs II
 Jonathan M. Ward, Okinawa Institute of Science and Technology
 Graduate University (Japan)
7. Microresonators in Novel Devices and Topologies II
 Jonathan M. Ward, Okinawa Institute of Science and Technology
 Graduate University (Japan)
8. Quantum Optics with Microresonators
 Vladimir S. Ilchenko, GM Cruise LLC (United States)
9 Microresonators in Novel Devices and Topologies III
 Alan H. Paxton, Air Force Research Laboratory (United States)

10 Microresonators in Novel Devices and Topologies IV
 Vladimir S. Ilchenko, GM Cruise LLC (United States)

11 Beam Shaping I
 Stefan Hambücker, INGENERIC GmbH (Germany)

12 Beam Shaping II
 James R. Leger, University of Minnesota, Twin Cities (United States)

13 Beam Combining, Mode Control, Beam Diagnostics
 Alan H. Paxton, Air Force Research Laboratory (United States)