Front Matter: Volume 10952
Medical Imaging 2019

Image Perception, Observer Performance, and Technology Assessment

Robert M. Nishikawa
Frank W. Samuelson
Editors

20–21 February 2019
San Diego, California, United States

Sponsored by
SPIE

Cooperating Organizations
AAPM—American Association of Physicists in Medicine (United States)
IFCARS—International Foundation for Computer Assisted Radiology and Surgery (Germany)
MIPS—Medical Image Perception Society (United States)
SIIM—Society for Imaging Informatics in Medicine (United States)
WMIS—World Molecular Imaging Society

Published by
SPIE

Volume 10952
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>IMAGE PERCEPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10952 03</td>
<td>Does the strength of the gist signal predict the difficulty of breast cancer detection in usual presentation and reporting mechanisms? [10952-2]</td>
</tr>
<tr>
<td>10952 04</td>
<td>Oculomotor behavior of radiologists reading digital breast tomosynthesis (DBT) [10952-3]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>MODEL OBSERVERS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10952 05</td>
<td>Automatic strategy for CHO channel reduction in x-ray angiography systems [10952-4]</td>
</tr>
<tr>
<td>10952 06</td>
<td>Template models for forced-localization tasks [10952-5]</td>
</tr>
<tr>
<td>10952 07</td>
<td>Autoencoder embedding of task-specific information [10952-6]</td>
</tr>
<tr>
<td>10952 08</td>
<td>Learning the Hotelling observer for SKE detection tasks by use of supervised learning methods [10952-7]</td>
</tr>
<tr>
<td>10952 09</td>
<td>Learning the ideal observer for joint detection and localization tasks by use of convolutional neural networks [10952-8]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>MODEL OBSERVERS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10952 0A</td>
<td>Laguerre-Gauss and sparse difference-of-Gaussians observer models for signal detection using constrained reconstruction in magnetic resonance imaging [10952-9]</td>
</tr>
<tr>
<td>10952 0B</td>
<td>Tests of projection and reconstruction domain equivalence for a feature-driven model observer [10952-10]</td>
</tr>
<tr>
<td>10952 0C</td>
<td>New difference of Gaussian channel-sets for the channelized Hotelling observer? [10952-11]</td>
</tr>
<tr>
<td>10952 0D</td>
<td>A foveated channelized Hotelling search model predicts dissociations in human performance in 2D and 3D images [10952-12]</td>
</tr>
<tr>
<td>10952 0E</td>
<td>Using transfer learning for a deep learning model observer [10952-13]</td>
</tr>
<tr>
<td>SESSION 4 TECHNOLOGY IMPACT AND ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>10952 0F Estimating latent reader-performance variability using the Obuchowski-Rockette method [10952-14]</td>
<td></td>
</tr>
<tr>
<td>10952 0G Adaptive sample size re-estimation in MRMC studies [10952-15]</td>
<td></td>
</tr>
<tr>
<td>10952 0H Radiation-therapy-induced erythema: comparison of spectroscopic diffuse reflectance measurements and visual assessment [10952-16]</td>
<td></td>
</tr>
<tr>
<td>10952 0I Impact of patient photos on detection accuracy, decision confidence, and eye-tracking parameters in chest and abdomen images with tubes and lines [10952-17]</td>
<td></td>
</tr>
<tr>
<td>10952 0J Is there a safety-net effect with computer-aided detection (CAD)? [10952-18]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 5 DEEP LEARNING APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10952 0K Correlation between a deep-learning-based model observer and human observer for a realistic lung nodule localization task in chest CT [10952-19]</td>
</tr>
<tr>
<td>10952 0L Implementation of an ideal observer model using convolutional neural network for breast CT images [10952-20]</td>
</tr>
<tr>
<td>10952 0M Learning stochastic object model from noisy imaging measurements using AmbientGANs [10952-21]</td>
</tr>
<tr>
<td>10952 0N BI-RADS density categorization using deep neural networks [10952-22]</td>
</tr>
<tr>
<td>10952 0O Mammographic breast density classification using a deep neural network: assessment based on inter-observer variability [10952-23]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6 OBSERVER PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10952 0P Development of methods to evaluate probability of reviewer’s assessment bias in Blinded Independent Central Review (BICR) imaging studies [10952-24]</td>
</tr>
<tr>
<td>10952 0Q Reader disagreement index: a better measure of overall review quality monitoring in an oncology trial compared to adjudication rate [10952-25]</td>
</tr>
<tr>
<td>10952 0R A 2-AFC study to validate artificially inserted microcalcification clusters in digital mammography [10952-26]</td>
</tr>
<tr>
<td>10952 0T Blinding of the second reader in mammography screening: impact on behaviour and cancer detection [10952-29]</td>
</tr>
</tbody>
</table>
An observer study to assess the detection of calcification clusters using 2D mammography, digital breast tomosynthesis, and synthetic 2D imaging [10952-30]

2D single-slice vs. 3D viewing of simulated tomosynthesis images of a small-scale breast tissue model [10952-31]

Changes in breast density [10952-32]

Assessment of a quantitative mammographic imaging marker for breast cancer risk prediction [10952-33]

Comparing senior residents performance to radiologists in lung cancer detection [10952-28]

Data transformations for variance stabilization in the statistical assessment of quantitative imaging biomarkers [10952-34]

A case study regarding clinical performance evaluation method of medical device software for approval [10952-35]

In-vitro and in-vivo comparison of radiation dose estimates between state-of-the-art interventional fluoroscopy systems [10952-36]

Prostate Imaging Self-assessment and Mentoring (PRISM): a prototype self-assessment scheme [10952-37]

A statistical analysis of oral tagging in CT colonography and its impact on flat polyp detection and characterization [10952-40]

Missed cancer and visual search of mammograms: what feature-based machine-learning can tell us that deep-convolution learning cannot (Cum Laude Poster Award) [10952-41]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abbey, Craig K., 06, 0D
Abdlaty, Ramy, 0H
Adamo, R., 11
Al Mohammad, Badera, 0F, 0Y
Anastasio, Mark A., 07, 08, 09, 0M
Aoyama, Gakuto, 10
Astley, Susan M., 0J
Baek, Jongduk, 0L
Balta, Christiana, 0C, 0V
Barish, Matthew A., 15
Bhadra, Sayantan, 0M
Boone, John M., 06
Borges, Lucas R., 0R
Bouwman, Ramona W., 0C
Brennan, Patrick C., 03, 0F, 0N, 0Y
Broeders, Mireille J. M., 0C
Brooks, Frank, 0M
Chen, Weijie, 0G
Chen, Yan, 12
Cockmartin, Lesley, 0U
Cooper, Jennifer Anne, 0T
Dance, David R., 0E, 0U, 0W
D’Ardenne, Nicholas M., 04
Dave, J. K., 11
de Azevedo Marques, Paulo M., 0R
Demchig, Delgermaa, 0N
Doerwald, Lilian, 0H
Du-Crow, Ethan, 0J
Eckstein, Miguel P., 06, 0D
Ekpo, Ernest U., 03
Elashoovan, Premkumar, 0E, 0U
Emoto, Yutaka, 10
Eschelman, D. J., 11
Evans, Karla K., 03
Fang, Qiyin, 0H
Favazza, Christopher P., 05
Feng, Jun, 14
Fetterly, Kenneth A., 05
Fieselmann, A., 0O
Fletcher, J. G., 0K
Gale, Alastair, 12
Gandomkar, Ziba, 03, 0N
Gavrielides, Marios A., 0Z
Gifford, Howard C., 0B
Given-Wilson, Rosalind M., 0U, 0W
Gomez-Cardona, Daniel, 05
Gong, Hao, 0K
Gong, Qi, 0Z
Gonsalves, C. F., 11
Granstedt, Jason L., 07
Halling-Brown, M. D., 0E, 0W
Han, Minah, 0L
Hayward, Joseph, 0H
Heidari, Morteza, 0X
Hills, Stephen L., 0F, 0Y
Hora, Megan J., 0K
Hu, Qiyan, 0K
Huang, Zhipeng, 0G
Hulleman, Johan, 0J
Isoda, Hiroyoshi, 10
Ito, Tatsuya, 10
Jenkinson, David, 0T
Johnson, Tucker F., 0K
Kaiser, N., 0O
Kappler, S., 0O
Karbaschi, Zohreh, 0B
Karssemeijer, Nico, 0C
Kim, Gihun, 0L
Koo, Chi Wan, 0K
Krupinski, Elizabeth A., 0I, 16
Kubo, Takeshi, 10
Kuroda, Tomohiro, 10
Lago, Miguel A., 0D
Leng, Shuai, 05, 0K
Levin, David L., 0K
Lewis, E., 0E
Lewis, Sarah J., 03
Li, Hua, 0B
Li, Qin, 0Z
Liang, Zhengrong, 15
Lv, Yi, 14
Mackenzie, Alistair, 0U
Maier, A., 0O
Mall, Suneepta, 16
McAvinney, R., 0W
McCollough, Cynthia H., 0K
McEntee, Mark F., 0N
Mello-Thoms, Claudia, 16
Michalopoulou, Eleni, 12
Mirmiaharikandehei, Seyedehnafiseh, 0X
Murphy, W., 0E
Myers, Kyle, 06
Nishikawa, Robert M., 04
Nishio, Mizuho, 10
O’Connor, J. Michael, 0P, 0Q
Petrick, Nicholas, 0Z
Pickhardt, Perry J., 15
Pineda, Angel R., 0A
Pomeroy, Marc J., 15
Qian, Wei, 0X
Qiu, Yuchen, 0X
Ravikumar, N., 0O
Reed, Warren, 0Y
Reiser, Ingrid, 0V
Ritschl, L., 0O
Saade, Charbel, 0Y
Samuelson, Frank W., 06, 0G
Schueler, Beth A., 05
Sechopoulos, Ioannis, 0C, 0V
Sharma, Manish, 0P, 0Q
Shim, Hyunjung, 0L
Shimizu, Koji, 10
Singareddy, Arintha, 0P, 0Q
Suleiman, Moayyad E., 0N
Takahashi, Edwin A., 0K
Tapia, Kriscia A., 03
Taylor-Phillips, Sian, 0T
Tcheuko, Lucas, 0G
Thomson, Emma L., 0U
Trieu, PhuongDung, 03
Trunz, L., 11
van Engen, Ruben E., 0C, 0V
van Ongeval, Chantal, 0U
Veldkamp, Wouter J. H., 0C, 0V
Vesal, S., 0O
Vieira, Marcelo A. C., 0R
Walls, Matthew G., 0U, 0W
Walther, Andrew, 0K
Wang, Jia Yang, 14
Warren, Lucy M., 0J, 0U, 0W
Wells, K., 0E
Wilkinson, Louise S., 0U, 0W
Wolfe, Jeremy M., 03, 04
Wu, Chia-Chien, 04
Yakami, Masahiro, 10
Yang, Jie, 15
Young, Kenneth C., 0E, 0U, 0W
Yu, Lifeng, 0K
Zargari Khuzani, Abolfazl, 0X
Zeng, Rongxing, 06
Zhang, Lei, 14
Zhang, Min, 14
Zheng, Bin, 0X
Zhou, Weimin, 07, 08, 09, 0M
Zuley, Margarita L., 04
Conference Committee

Symposium Chairs

Ronald M. Summers, National Institutes of Health Clinical Center (United States)
Georgia D. Tourassi, Oak Ridge National Laboratory (United States)

Conference Chairs

Robert M. Nishikawa, University of Pittsburgh (United States)
Frank W. Samuelson, U.S. Food and Drug Administration (United States)

Conference Program Committee

Craig K. Abbey, University of California, Santa Barbara (United States)
Jongduk Baek, Yonsei University (Korea, Republic of)
François O. Bochud, Centre Hospitalier Universitaire Vaudois (Switzerland)
Jovan G. Brankov, Illinois Institute of Technology (United States)
Yan Chen, Loughborough University (United Kingdom)
Brandon D. Gallas, U.S. Food and Drug Administration (United States)
Howard C. Gifford, University of Houston (United States)
Stephen L. Hillis, The University of Iowa (United States)
Elizabeth A. Krupinski, Emory University School of Medicine (United States)
Matthew A. Kupinski, College of Optical Sciences, The University of Arizona (United States)
Maciej A. Mazurowski, Duke University (United States)
Mark F. McEntee, The University of Sydney (Australia)
Claudia R. Mello-Thoms, The University of Sydney (Australia) and University of Pittsburgh (United States)
Ljiljana Platiša, Universiteit Gent (Belgium)
Ingrid S. Reiser, The University of Chicago (United States)
Sian Taylor-Phillips, The University of Warwick (United Kingdom)
Pontus A. Timberg, Skåne University Hospital (Sweden)
David L. Wilson, Case Western Reserve University (United States)

Session Chairs

1 Image Perception
 Frank W. Samuelson, U.S. Food and Drug Administration (United States)
 Robert M. Nishikawa, University of Pittsburgh (United States)
2 Model Observers I
Howard C. Gifford, University of Houston (United States)
François O. Bochud, Centre Hospitalier Universitaire Vaudois (Switzerland)

3 Model Observers II
Craig K. Abbey, University of California, Santa Barbara (United States)
Sian Taylor-Phillips, The University of Warwick (United Kingdom)

4 Technology Impact and Assessment
Ingrid S. Reiser, The University of Chicago (United States)
Jovan G. Brankov, Illinois Institute of Technology (United States)

5 Deep Learning Applications
Maciej A. Mazurowski, Duke University (United States)
Pontus A. Timberg, Skåne University Hospital (Sweden)

6 Observer Performance
Elizabeth A. Krupinski, Emory University School of Medicine (United States)
Stephen L. Hillis, The University of Iowa (United States)

7 Observer Performance in Breast Imaging
Claudia R. Mello-Thoms, The University of Sydney (United States)
Yan Chen, Loughborough University (United Kingdom)