Optical Tomography and Spectroscopy of Tissue XIII

Sergio Fantini
Paola Taroni
Editors

4–6 February 2019
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10874
Contents

vii Authors
ix Conference Committee

ADVANCES IN METHODS AND INSTRUMENTATION I

10874 03 Self-calibrated frequency domain diffuse optical spectroscopy with a phased source array [10874-2]

10874 04 RTBioT: a real-time healthcare monitoring Bio-IoT device employing spatially resolved near infrared (NIR) spectroscopy (Invited Paper) [10874-3]

10874 05 Toward handheld real time frequency domain diffuse optical spectroscopy [10874-5]

ADVANCES IN METHODS AND INSTRUMENTATION II

10874 08 Multi-wavelength dual-detection channel system for time-resolved near-infrared spectroscopy [10874-8]

10874 09 Bioreorbable fibers for time-domain diffuse optical measurements: a step toward next generation optical implantable devices [10874-9]

10874 0A Water and lipid contents measured at various parts of the human body with a six-wavelength time-resolved spectroscopy system [10874-10]

DIFFUSE OPTICAL TOMOGRAPHY

10874 0E Using dynamic vascular optical spectroscopy to evaluate peripheral arterial disease (PAD) in patients who undergo a vascular intervention [10874-14]

10874 0F New method to diagnose joints affected by systemic lupus erythematosus based on frequency-domain optical transmission [10874-15]

APPLICATIONS TO LIVER, KIDNEY, BREAST, INTESTINE

10874 0H Near infrared spectroscopy system for quantitative monitoring of renal hemodynamics and oxygenation in rats [10874-17]

10874 0I High spatial frequency structured light imaging texture analysis using Gabor filtering differentiates tumor from normal tissue subtypes [10874-18]
Hyperspectral, hybrid continuous wave and frequency domain diffuse optical tomography in a handheld reflectance geometry for breast cancer diagnostics [10874-19]

SPATIAL FREQUENCY DOMAIN IMAGING I

Short-wave infrared spatial frequency domain imaging for non-invasive quantification of tissue water content [10874-24]

SPATIAL FREQUENCY DOMAIN IMAGING II

A multi spectral hand-held spatial frequency domain imaging system for imaging human colorectal cancer [10874-29]
Hand-held multi-wavelength spatial frequency domain imaging for breast cancer imaging [10874-30]

FLUORESCENCE IMAGING

New image reconstruction algorithm for fluorescence optical tomography based on the adjoint radiative transfer equation [10874-31]
CCD-based temperature modulated fluorescence tomography [10874-34]

FLUORESCENCE AND CHERENKOV RADIATION

Early detection of breast cancer using ER specific novel NIR fluorescent dye conjugate: a phantom study using FD-f-DOT system [10874-36]
Noninvasive imaging of dual-agent uptake in glioma and normal tissue using MRI-coupled fluorescence tomography [10874-39]
Correcting Cherenkov images for large-scale tissue-optical property attenuation using SFDI and patterned light reflectance for quantitative dosimetry [10874-40]

DIFFUSE CORRELATION SPECTROSCOPY

Diffuse correlation tomography in the transport regime: a theoretical study of the sensitivity to Brownian motion (Invited Paper) [10874-41]
CEREBRAL BLOOD FLOW

10874 1D Dynamic measurements of absolute cerebral blood flow with coherent hemodynamics spectroscopy [10874-49]
10874 1E Frequency dependent hemodynamic response to intracranial pressure changes [10874-50]

FUNCTIONAL BRAIN IMAGING

10874 1H An fNIRS probe positioning system using augmented reality technology [10874-53]
10874 1I Comparison of spontaneous and induced coherent hemodynamics in the human brain [10874-54]

BREAST IMAGING

10874 1L Monitoring total hemoglobin concentration changes across neoadjuvant chemotherapy in PgR-positive and PgR-negative breast cancer with diffuse optical tomography [10874-57]
10874 1N Multi-wavelength time domain diffuse optical tomography for breast cancer: initial results on silicone phantoms [10874-59]

POSTER SESSION

10874 1S Quantifying joint blood flow in a rat model of rheumatoid arthritis with dynamic contrast-enhanced near-infrared spectroscopy [10874-63]
10874 1U A three-wavelength 240-channel NIRS-DOT system of lock-in photon-counting mode for brain functional investigation [10874-65]
10874 1V A multi-wavelength single-pixel SFD imaging system based on lock-in photon-counting detection [10874-66]
10874 1W Phantom verification for lock-in-photon-counting-based diffuse optical tomography system [10874-67]
10874 1X Anisotropy factor reconstruction as a new endogenous contrast for cancer diagnosis with optical tomography [10874-68]
10874 21 A dual-wavelength spread spectrum-based spectroscopic system for time-domain near-infrared diffuse optical imaging [10874-72]
10874 25 Spatial-temporal constraints guided dynamic fluorescence tomographic model for enhanced imaging of organs and functional structures in small animals [10874-76]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>In silico investigation of near-infrared light propagation in the joints of the human hand</td>
<td>[10874-78]</td>
</tr>
<tr>
<td>29</td>
<td>Adaptive extraction of permissible source region based on matched filtering for bioluminescence tomography</td>
<td>[10874-80]</td>
</tr>
<tr>
<td>2A</td>
<td>Depth dependent coherent hemodynamics during induced blood pressure oscillations</td>
<td>[10874-81]</td>
</tr>
<tr>
<td>2B</td>
<td>A miniature frequency domain diffuse optical optode for quantitative wearable oximetry</td>
<td>[10874-82]</td>
</tr>
<tr>
<td>2C</td>
<td>An integration model of steady-state single-fiber diffuse reflectance</td>
<td>[10874-83]</td>
</tr>
<tr>
<td>2J</td>
<td>A point-of-care handheld region-of-interest (ROI) 3D functional diffuse optical tomography (fDOT) system</td>
<td>[10874-90]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdalsalam, Ola, 03
Abdelal, Heba, 0T
Addoun, Ahmad, 0V, 1X
Algarawi, Maha, 0Y
Alipour, Zahra, 0T
Altoe, Mirella L., 1L
Antaki, James F., 0U
Applegate, Matthew B., 0O
Arridge, Simon R., 1N, 21
Askanase, A. D., 0F
Asllanaj, Fatmir, 0V, 1X
Bajakian, D. R., 0E
Behera, Anurag, 08
Beier, Frank, 1S
Blaney, Giles, 1D, 1I, 2A
Boetti, Nadia G., 09
Brusa, Petr, 14
Buttafava, Mauro, 08
Campbell, Chris, 0J
Cantow, Kathleen, 0H
Ceci-Ginistrelli, Edoardo, 09
Chapman, Jr., William, 0T
Chatterjee, Deyali, 0T
Chaudury, Rachita, 2B
Chen, Duofang, 29
Chen, Xueli, 29
Cho, Seonguk, 04
Chung, Philip, 04
Cohen, David, 27
Contassot-Vivier, Sylvain, 1X
Cortini, Davide, 08
Crew, Katherine, 1L
Dalla Mora, Alberto, 08, 09, 1N
Dan, Mai, 1V
Danias, G., 0F
Da Silva, Anabela, 15
Davis, Scott C., 13
Desjardins, Lise, 1S
Ding, Xuerui, 1U
Diop, Mamadou, 1S, 27
Di Sciacca, Giuseppe, 1N
Di Siena, Laura, 08, 09, 1N
Du, Wenwen, 1W
Dumas, John Paul, 00
Durand, Turgut, 15
Erfanzadeh, Mohsen, 0T
Erkol, Hakan, 0Y
Fantini, Sergio, 1D, 1I, 2A
Farina, Andrea, 09, 1N
Ferocino, Edoardo, 1N
Flemming, Bert, 0H
Forghani, Farnoush, 0J
Gao, Feng, 1U, 1V, 1W
Geraldino-Pardiilla, L., 0F
Gladstone, David J., 14
Gladenetz, Thomas, 0H
Grosenick, Dirk, 0H
Gulsen, Gulbek, 0Y
Hachadorian, Rachael L., 14
Hadjhay, Jennifer A., 1S
He, Xiangdong, 1W
Hedden, Jeremy C., 21
Herschman, Dawn L., 1L
Hibshoosh, Hana, 1L
Hilgers, Andreas H., 0E, 0F, 1L, 25
Hill, Brian Y., 04
Hoi, J. W., 0E
Homm, Shu, 0A
Hoppe, Alexander, 0H
Hou, Xi, 1V
Howard, Scott, 03
Huang, Yi, 29
Ioussoufavitc, Seva, 1S
Istfan, Raeb, 2F
Janner, Davide, 09
Jarvis, Lesley A., 14
Jermyn, Michael, 14
Jose, Iven, 10
Jun, Seunghyeok, 04
Kainerstorfer, Jana M., 0U, 1E
Kaminsky, Kevin, 1L
Kanhirodon, Rajan, 2J
Kapoor, T., 0F
Kawaguchi, Hiroshi, 1H
Kim, Dongkyu, 25
Kim, Hyun K., 0E, 1L, 25
Kim, Sehwan, 04
Kim, Y., 0E, 0F
Kitsmiller, Donald J., 05, 0J
Konuguol Venkata Sekar, Sanathana, 09
Krishnamurthy, Nishanth, 1I
Kwong, Tiffany C., 0Y
LaRochelle, Steven, 2B
Lee, Jong H., 25
Lee, Minseok, 04
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital United States) and Harvard Medical School (United States)

Symposium Co-chairs

Jennifer K. Barton, The University of Arizona (United States)
Wolfgang Drexler, Medical University of Vienna (Austria)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

Sergio Fantini, Tufts University (United States)
Paola Taroni, Politecnico di Milano (Italy)

Conference Program Committee

Robert R. Alfano, The City College of New York (United States)
Erin M. Buckley, Georgia Institute of Technology (United States)
Regine Cho, University of Rochester (United States)
Hamid Dehghani, The University of Birmingham (United Kingdom)
Amir H. Gandjbakhche, National Institutes of Health (United States)
Sylvain Gioux, Laboratoire des sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (France)
Andreas H. Hielscher, Columbia University (United States)
Shudong Jiang, Thayer School of Engineering at Dartmouth (United States)
Jana M. Kainerstorfer, Carnegie Mellon University (United States)
Anand T. N. Kumar, Athinoulia A. Martinos Center for Biomedical Imaging (United States)
Frederic Leblond, Ecole Polytechnique de Montréal (Canada)
Mark J. Niedre, Northeastern University (United States)
Eiji Okada, Keio University (Japan)
Thomas D. O’Sullivan, University of Notre Dame (United States)
Antonio Pifferi, Politecnico di Milano (Italy)
Anne Planat-Chrétien, CEA-LETI (France)
Valentina Quaresima, Università degli Studi dell'Aquila (Italy)
Darren M. Roblyer, Boston University (United States)
Ilias Tachtsidis, University College London (United Kingdom)
Heidrun Wabnitz, Physikalisch-Technische Bundesanstalt (Germany)
Quing Zhu, Washington University in St. Louis (United States)

Session Chairs

1 Advances in Methods and Instrumentation I
 Jana M. Kainerstorfer, Carnegie Mellon University (United States)

2 Advances in Methods and Instrumentation II
 Qianqian Fang, Northeastern University (United States)

3 Diffuse Optical Tomography
 Sergio Fantini, Tufts University (United States)

4 Applications to Liver, Kidney, Breast, Intestine
 Mamadou Diop, Lawson Health Research Institute (Canada)

5 Spatial Frequency Domain Imaging I
 Sergio Fantini, Tufts University (United States)
 Paola Taroni, Politecnico di Milano (Italy)

6 Spatial Frequency Domain Imaging II
 Darren M. Roblyer, Boston University (United States)

7 Fluorescence Imaging
 Mark J. Niedre, Northeastern University (United States)

8 Fluorescence and Cherenkov Radiation
 Anand T. N. Kumar, Athinoula A. Martinos Center for Biomedical Imaging (United States)

9 Diffuse Correlation Spectroscopy
 Erin M. Buckley, Georgia Institute of Technology (United States)

10 Cerebral Blood Flow
 Adam T. Eggebrecht, Washington University School of Medicine in St. Louis (United States)

11 Functional Brain Imaging
 Stefan A. Carp, Athinoula A. Martinos Center for Biomedical Imaging (United States)

12 Breast Imaging
 Paola Taroni, Politecnico di Milano (Italy)