Front Matter: Volume 10919
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KICK-OFF SESSION

| 10919 03 | ZnO as a platform for quantum photonics (Invited Paper) [10919-95] | | |
| 10919 05 | Strategies for high-performance perovskite solar cells (Invited Paper) [10919-47] | | |

ULTRA WIDE BANDGAP OXIDE SEMICONDUCTORS: DOPING AND BAND STRUCTURE

| 10919 02 | Hydrogen passivation of calcium and magnesium doped β-Ga$_2$O$_3$ [10919-31] | | |
| 10919 10 | Ga vacancies and electrical compensation in β-Ga$_2$O$_3$ thin films studied with positron annihilation spectroscopy (Invited Paper) [10919-4] | | |

ULTRA WIDE BANDGAP OXIDE SEMICONDUCTORS: APPLICATIONS

| 10919 13 | Gallium-oxide trench-type devices (Invited Paper) [10919-33] | | |
| 10919 16 | DC and dynamic switching characteristics of field-plated vertical geometry β-Ga$_2$O$_3$ rectifiers (Invited Paper) [10919-35] | | |

2D MATERIALS AND QUANTUM STRUCTURES

10919 17	Electrical properties of BeMgZnO/ZnO heterostructures with high-density two-dimensional electron gas (Invited Paper) [10919-36]		
10919 19	Short infrared wavelength quantum cascade detectors based on non-polar ZnO/ZnMgO quantum wells (Invited Paper) [10919-38]		
10919 1A	Surface plasmon induced dramatic reflection reduction due to subwavelength coupling in indium-tin-oxide/lithium niobate [10919-39]		
OXIDE-BASED ENERGY HARVESTING AND SOLAR I

10919 1G On the role of different paramagnetic centers in conducting nickel oxide thin films (Invited Paper) [10919-46]

10919 1H p-Type thin film field effect transistors based on lithium-doped nickel oxide channels grown by pulsed laser deposition (Invited Paper) [10919-96]

10919 1J Synthesis and characterization of SnO2/graphene transparent conducting films [10919-49]

OXIDE-BASED ENERGY HARVESTING AND SOLAR II

10919 1K Environmentally friendly approach via solvent-free processed perovskite solar cells (Invited Paper) [10919-50]

PHOTON-INDUCED PHENOMENA IN OXIDES

10919 1P Enhancement in optical properties of ZnO nanorods by UV ozone treatment [10919-57]

TUNING TRANSMITTANCE AND REFLECTANCE FROM UV TO IR

10919 1S Exciting and confining light in Cr doped gallium oxide (Invited Paper) [10919-26]

10919 1W Transparent and ultra-flexible PEDOT:PSS/ITO/Ag/ITO on Parylene thin films with tunable properties [10919-61]

OXIDE-BASED GAS SENSORS

10919 1X Optical gas sensing properties of gold-nanoparticle incorporated LSTO films at high temperature (Invited Paper) [10919-62]

SPECIALIZED CHARACTERIZATION

10919 21 Non-contact surface temperature mapping of alpha-alumina using a Raman scattering method (Invited Paper) [10919-67]

10919 22 Zinc-oxide nanowires characterization using optical reflectance [10919-68]

10919 23 Role of microstructure and stress evolution on the elastic constants of multiferroic oxide-based thin films (Invited Paper) [10919-69]
Electron beam induced modifications in third harmonic process of spray coated Mn: ZnO nanostructures (Invited Paper) [10919-70]

OXIDE NANOSTRUCTURES AND APPLICATIONS

Photocatalytic properties for different metal-oxide nanomaterials (Invited Paper) [10919-71]

Surface engineering using compounds of titanium nanocoatings for silicon-based optical devices [10919-74]

TUNING ELECTRICAL PROPERTIES

Oscillation electron model of mixed copper-lanthanum oxide crystals [10919-79]

EMITTERS AND DETECTORS

Intersubband absorption at normal incidence by m-plane ZnO/MgZnO quantum wells (Invited Paper) [10919-80]

Efficient white-light emission from Zn2GeO4 nanomaterials (Invited Paper) [10919-81]

POSTER SESSION

Investigating time-varying phosphorous doping effect on the structural and optical properties of ZnO thin films [10919-83]

High-temperature oxygen sensing behavior of perovskite films on the optical fiber platform [10919-84]

Enhanced optical properties with the assimilation of boron and phosphorus dopant in co-doped ZnO thin film [10919-85]

Augmenting optical and structural properties in Zn0.85Mg0.15O thin film with P-B co-doping [10919-86]

Interdependence of Ar and O2 partial pressure on the properties of RF sputtered Zn0.85Mg0.15O thin film [10919-87]

Doped SnO2 nanoparticles for solar-cell application [10919-88]

Enhancement of photocurrent and responsivity of Zn1-xMgxO (x=15%)-based ultraviolet detector by UV-ozone treatment [10919-89]
Enhancement in optical properties with suppression of defect states by UV-ozone processing in RF sputtered Zn$_{1-x}$Mg$_x$O (x=15\%) thin film [10919-90]

Improvement in performance characteristics of Zn$_{(1-x)}$Mg$_x$O (x=15\%) thin film transistor (TFT) with UV-ozone treatment [10919-91]

Design, fabrication, and characterization of a disordered one-dimensional broadband photonic bandgap structure [10919-92]

Characterization of ZnO and Fe doped ZnO nanoparticles using fluorescence spectroscopy [10919-93]

Characterization of Mn doped ZnO wrinkle-network nanostructured thin films deposited by sol-gel spin coating technique [10919-98]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abernathy, Harry W., 2G
Adam, Rania E., 25
Alam, Md Jawaid, 1P, 2L, 2M, 2N
Alisafaee, Hossein, 2O
Alonso-Orts, M., 15
Antony, Albin, 24
Appalah, Kumar, 26
Avrutin, V., 17
Ayele, Fekadu H., 23
Baldini, Michele, 10
Bangera, Ankitha E., 26
Bazylewski, Paul, 1G
Billing, Dave G., 23
Bourouina, Tarik, 22
Bousseksou, Adel, 19
Bove, Philippe, 1H
Buric, Michael P., 21
Carey, Patrick, 1V, 16
Castañeda, J., 1J
Chakrabarti, Subhananda, 1P, 2F, 2H, 2L, 2M, 2N
Chan, Wai-Kin, 1K, 2K
Chang, Chin-Wei, 16
Chauveau, Jean-Michel, 19, 2C
Chavan, Vinayak, 2H, 2I
Chen, Wei, 2K
Chen, Yen-Ting, 16
Charpening, Benjamin T., 21
Colombelli, Raffaele, 19
Comins, Darrell J., 23
Couteau, C., 03
Derelle, Sophie, 19
Dikshit, Ashutosh, 2Q
Ding, K., 17
Djurisić, Aleksandra B., 05, 1K, 2K
Dolado, J., 2D
Dwivedi, Jishnu, 24
Dwivedi, Shyam Murli Manohar Dhar, 2L
Elbag, S., 25
Enriquez, C., 1J
Erkan, Mazen, 22
Espinosa, K., 1J
Ezugwu, Angela Ebere, 1G
Fan, Qi Hua, 1W
Fanchini, Giovanni, 1G
Fernando, Mihrin, 2P
Geng, W., 2P
Ghadi, Hemant, 1P, 2F, 2H, 2I, 2J, 2L, 2M, 2N
Ghosh, Anupam, 2L
Ghosh, Chiranjib, 2L
Girard, J. Ph., 03
Gnambooe-Capochichi, Martine, 22
Hackett, Gregory A., 2G
Hidalgo, P., 2D
Hiero, Adrian, 19, 2C
Hinkov, Borislav, 19
Hugues, Maxime, 19, 2C
Izyumskaya, N., 17
Jaeck, Julien, 19
Jakata, Kudakwashe, 23
Jee, Youngseok, 1X, 2G
Jolivet, Arnaud, 19
Julien, François H., 19
Kalapos, Thomas L., 2G
Kamal, 2Q
Karjalainen, Antti, 10
Klyk, I. V., 24
Kuramata, Akito, 13, 16
La Rue, Gavin, 2O
Le Biavan, Nolwenn, 19, 2C
Lee, Shiwoo, 2G
Lefebvre, D., 2C
LeMaire, Peter K., 2P
Le Pivert, Marie, 22
LePrince-Wang, Yamin, 22
Léondel, G., 03
Leung, Tik Lun, 1K, 2K
Li, Wen, 1W
Liao, Y., 16
Lin, Jeshnan, 16
Liu, Changwen, 05
Liu, Fangzhou, 1K, 2K
Lynn, Kelvin G., 0Z
Makkonen, Ilja, 10
Marañón, V., 1J
Mariti, Frédéric, 22
Maluñonis, A., 17
McClintock, R., 1H
McCluskey, Matthew D., 0Z
Méndez, Bianchi, 1S, 2D
Mondal, Aniruddha, 2L
Mones Bajo, Miguel, 19, 2C
Morkoç, H., 17
Murkute, Punam, 1P, 2F, 2H, 2I, 2J, 2L, 2M, 2N
Mustafa, Elfatih, 25
Netesova, Nadezhda P., 2B
Ng, Alan Man Ching, 1K, 2K
Ng, Annie, 05
Njoroge, Eric G., 23
Ng, Maria L., 1S
Nogales, E., 1S
Nur, O., 25
Ohodnicki, Paul R., Jr., 1X, 2G
Ordouie, Ehsan, 2O
Ozga, K., 24
Özgür, Ü., 17
P., Poornesh, 24
Patakalvi, R., 1J
Pearton, S. J., 16
Pérez, H., 1J
Petwal, Vikash Chandra, 24
Philip, Reji, 24
Phillips, David Lee, 05
Pirota, Stefano, 19
Prajapati, Y. K., 2Q
Prozheeva, Vera, 10
Razeghi, M., 1H
Ren, Fan, 16
Ren, Zhiwei, 05
Ritter, Jacob R., 0Z
Rodríguez, R., 1J
Rogers, David J., 1H
Rosendo, E., 1J
Sabry, Yasser M., 22
San Juan, José M., 1S
Sandana, V. E., 1H
Sanjeev, Ganesh, 24
Sasaki, K., 13
Sato, R., 1J
Šermukšnis, E., 17
Siahmakoun, Azad, 2O
Singh, Abhishek, 2Q
Singhal, Rahul, 2P
Smith, David J., 16
Strasser, Gottfried, 19
Surya, Charles, 05
Sushama, Sushama, 1P, 2F, 2H, 2I, 2L, 2M, 2N
Tadjer, Marko, 16
Tam, Ho Won, 1K, 2K
Tamayo-Arriola, Julen, 19, 2C
Tchernycheva, Maria, 19
Teherani, Ferechteh H., 1H
Thapa, Juddha, 21
Tuomisto, Filip, 10
Ulloa, J. M., 2C
Vennégues, P., 2C
Verma, Vijay Pal, 24
Wagner, Gunter, 10
Wamwani, Daniel M., 23
Wang, Chao, 1A
Wang, Yingce, 1A
Willander, M., 25
Wittkowski, Thomas, 23
Wong, Victor, 1G
Woodruff, Steven D., 21
Wu, Binlin, 2P
Wu, Jiajia, 1W
Wuenschell, Jeffrey K., 1X, 2G
Yamakoshi, S., 13
Yang, Jiancheng, 16
Yang, Weiyang, 1W
Zhang, Jingwen, 1A
Zhao, Hua, 1A
Zhu, Ruixue, 05
Conference Committee

Symposium Chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Center (United Kingdom)

Symposium Co-chairs

Sailing He, KTH Royal Institute of Technology (Sweden) and Zhejiang University (China)
Yasuhiro Koike, Keio University (Japan)

Program Track Chairs

James G. Grote, Photonics Consultant (United States)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Conference Chairs

David J. Rogers, Nanovation (France)
David C. Look, Wright State University (United States)
Ferechteh H. Teherani, Nanovation (France)

Conference Program Committee

Vitaliy Avrutin, Virginia Commonwealth University (United States)
Philippe Bove, Nanovation (France)
Ekaterine Chikoidze, Université de Versailles Saint-Quentin-en Yvelines (France)
Jean-Jacques Delaunay, The University of Tokyo (Japan)
Aleksandra B. Djurišić, The University of Hong Kong (Hong Kong, China)
Michael D. Gerhold, U.S. Army Research Office (United States)
Michael A. Harper, CIV USN ONR GLOBAL (United States)
Adrián Hierro, Universidad Politécnica de Madrid (Spain)
Axel Hoffmann, Technische Universität Berlin (Germany)
Na Lu, Purdue University (United States)
Bianchi Méndez, Universidad Complutense de Madrid (Spain)
Norbert H. Nickel, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
Tatsuo Okada, OPERA Center for Organic Photonics and Electronics Research (Japan)
Ümit Özgür, Virginia Commonwealth University (United States)
Seong-Ju Park, Gwangju Institute of Science and Technology (Korea, Republic of)
Manijeh Razeghi, Northwestern University (United States)
Federico Rosei, Université du Québec (Canada)
Vinod Eric Sandana, Nanovation (France)
Michael L. Schuette, Air Force Research Laboratory (United States)
Chris G. Van de Walle, University of California, Santa Barbara (United States)
Bruno Viana, Ecole Nationale Supérieure de Chimie de Paris (France)
Markus R. Wagner, Technische Universität Berlin (Germany)
Magnus Willander, Linköping University (Sweden)
Hideki Yamamoto, NTT Basic Research Laboratories (Japan)

Session Chairs
1 Kick-off Session
 David J. Rogers, Nanovation (France)
2 Keynote Session
 David J. Rogers, Nanovation (France)
3 Ultra Wide Bandgap Oxide Semiconductors: Density Functional Theory and Modelling
 Markus R. Wagner, Technische Universität Berlin (Germany)
 David C. Look, Wright State University (United States)
4 Deep Levels and Irradiation Induced Defects in Ga2O3
 Kelson Chabak, Air Force Research Laboratory (United States)
 David C. Look, Wright State University (United States)
5 Ultra Wide Bandgap Oxide Semiconductors: Progress in Thin Film Growth I
 Philippe Bove, Nanovation (France)
 Catherine Dubourdieu, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
6 Ultra Wide Bandgap Oxide Semiconductors: Progress in Thin Film Growth II
 Catherine Dubourdieu, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
 Philippe Bove, Nanovation (France)
7 Ultra Wide Bandgap Oxide Semiconductors: Progress in Thin Film Growth III
 Markus R. Wagner, Technische Universität Berlin (Germany)
 David J. Rogers, Nanovation (France)
8 Ultra Wide Bandgap Oxide Semiconductors: Doping and Band Structure
Vinod Eric Sandana, Nanovation (France)
Cuong Ton-That, University of Technology, Sydney (Australia)

9 Ultra Wide Bandgap Oxide Semiconductors: Applications
Vinod Eric Sandana, Nanovation (France)
David J. Rogers, Nanovation (France)

10 2D Materials and Quantum Structures
Vitaliy Avrutin, Virginia Commonwealth University (United States)
Adrián Hierro, Universidad Politécnica de Madrid (Spain)

11 Plasmonics
Vitaliy Avrutin, Virginia Commonwealth University (United States)
Adrián Hierro, Universidad Politécnica de Madrid (Spain)

12 Oxide-based Energy Harvesting and Solar I
Magnus Willander, Linköping University (Sweden)
David J. Rogers, Nanovation (France)

13 Oxide-based Energy Harvesting and Solar II
Magnus Willander, Linköping University (Sweden)
David J. Rogers, Nanovation (France)

14 Photon-induced Phenomena in Oxides
Philippe Bove, Nanovation (France)

15 Tuning Transmittance and Reflectance from UV to IR
Aleksandra B. Djurišić, The University of Hong Kong
(Hong Kong, China)
Vinod Eric Sandana, Nanovation (France)

16 Oxide-based Gas Sensors
Philippe Bove, Nanovation (France)

17 Specialized Characterization
Philippe Bove, Nanovation (France)
Matthew Putman, Nanotronics Imaging, Inc. (United States)

18 Oxide Nanostructures and Applications
Magnus Willander, Linköping University (Sweden)

19 Tuning Electrical Properties
Vitaliy Avrutin, Virginia Commonwealth University (United States)
Vinod Eric Sandana, Nanovation (France)
20 Emitters and Detectors

Philippe Bove, Nanovation (France)

Adrián Hierro, Universidad Politécnica de Madrid (Spain)