Contents

SESSION 1 BLOOD FLOW

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10955 02</td>
<td>Deep 3D convolutional neural networks for fast super-resolution ultrasound imaging [10955-1]</td>
</tr>
<tr>
<td>10955 03</td>
<td>Independent component analysis-based tissue clutter filtering for plane wave perfusion ultrasound imaging [10955-2]</td>
</tr>
<tr>
<td>10955 04</td>
<td>Accuracy improvement of echographic speckle tracking based on analysis of estimation error caused by acoustic pressure field [10955-3]</td>
</tr>
<tr>
<td>10955 05</td>
<td>Morphological image processing for multiscale analysis of super-resolution ultrasound images of tissue microvascular networks [10955-4]</td>
</tr>
<tr>
<td>10955 06</td>
<td>A two-fold enhancement of ultrasound vessel images using a non-local based restoration and morphological filtering [10955-5]</td>
</tr>
</tbody>
</table>

SESSION 2 US TOMOGRAPHY I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10955 08</td>
<td>Open-source Gauss-Newton-based methods for refraction-corrected ultrasound computed tomography [10955-7]</td>
</tr>
<tr>
<td>10955 09</td>
<td>Employing methods with generalized singular value decomposition for regularization in ultrasound tomography [10955-8]</td>
</tr>
<tr>
<td>10955 0A</td>
<td>Full waveform inversion for ultrasound computed tomography with high-sensitivity scan method [10955-9]</td>
</tr>
<tr>
<td>10955 0B</td>
<td>Accelerating image reconstruction in ultrasound transmission tomography using L-BFGS algorithm [10955-10]</td>
</tr>
<tr>
<td>10955 0C</td>
<td>Correlation of ultrasound tomography to MRI and pathology for the detection of prostate cancer [10955-24]</td>
</tr>
</tbody>
</table>
SESSION 3 ELASTOGRAPHY, TISSUE CLASSIFICATION AND DOPPLER

10955 OD On the feasibility of quantifying mechanical anisotropy in transversely isotropic elastic materials using acoustic radiation force (ARF)-induced displacements [10955-12]

10955 OE Axially-segmented cylindrical array for intravascular shear wave imaging [10955-13]

10955 OF Classification of cardiac adipose tissue using spectral analysis of ultrasound radiofrequency backscatter [10955-14]

10955 OG Tracking blood flow changes in the brains of neonates using angular-coherence-based power doppler [10955-15]

10955 OH An adaptive coherent flow power doppler beamforming scheme for improved sensitivity towards blood signal energy [10955-16]

SESSION 4 US TOMOGRAPHY II

10955 OI High SNR emission method with virtual point source in ultrasound computed tomography [10955-23]

10955 UJ Experimental analysis of ray-based sound speed reconstruction algorithms for phase aberration corrected USCT SAFT imaging [10955-11]

10955 OL A high throughout, extensible and flexible ultrasonic excitation and acquisition system for ultrasound imaging [10955-26]

10955 ON Study on acceleration schemes in Fresnel volume tomography for sound speed reconstruction [10955-40]

SESSION 5 BEAMFORMING AND IMAGE FORMATION

10955 OQ Coherent multi-transducer ultrasound imaging in the presence of aberration [10955-17]

10955 OP High dynamic range ultrasound beamforming using deep neural networks [10955-19]

10955 OQ Row-column beamforming with dynamic apodizations on a GPU [10955-20]

10955 OR Estimating signal and structured noise in ultrasound data using prediction-error filters [10955-21]

10955 OS The impact of mid lag spatial coherence parameters on coherent target detection [10955-22]
<table>
<thead>
<tr>
<th>Session 6</th>
<th>Image Processing and Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>10955 0T</td>
<td>Left ventricular ejection fraction assessment: unraveling the bias between area- and volume-based estimates [10955-28]</td>
</tr>
<tr>
<td>10955 0U</td>
<td>3D ultrasound biomicroscopy (3D-UBM) imaging and automated 3D assessment of the iridocorneal angle for glaucoma patients [10955-29]</td>
</tr>
<tr>
<td>10955 0V</td>
<td>Ultrasound prostate segmentation based on 3D V-Net with deep supervision [10955-30]</td>
</tr>
<tr>
<td>10955 0W</td>
<td>Ultrasound-guided breast biopsy of ultrasound occult lesions using multimodality image co-registration and tissue displacement tracking [10955-45]</td>
</tr>
<tr>
<td>10955 0X</td>
<td>Three-dimensional color Doppler ultrasound simulation to mimic paravalvular regurgitation [10955-32]</td>
</tr>
<tr>
<td>10955 0Y</td>
<td>Deep learning techniques for bone surface delineation in ultrasound [10955-33]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 7</th>
<th>Keynote and New Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>10955 12</td>
<td>Ultrasound backscattered tensor imaging of the brain: an ex vivo feasibility study [10955-37]</td>
</tr>
<tr>
<td>10955 13</td>
<td>Electroacoustic tomography (EAT): linear scanning with a single element transducer [10955-38]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poster Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>10955 14</td>
</tr>
<tr>
<td>10955 15</td>
</tr>
<tr>
<td>10955 16</td>
</tr>
<tr>
<td>10955 17</td>
</tr>
<tr>
<td>10955 18</td>
</tr>
<tr>
<td>10955 1A</td>
</tr>
<tr>
<td>10955 1B</td>
</tr>
</tbody>
</table>
Neighborhood resonance phenomenon for cell imaging via scanning probe acoustic microscope [10955-50]

Deep 3D convolutional neural network for automatic cancer tissue detection using multispectral photoacoustic imaging [10955-51]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdou, Ahmed, 09
Abou-Elkacem, Lotfi, 0G
Adabi, Saba, 06
Ali, Rehman, 08
Allbad, Azra, 06
Almekkaoui, Mohamed, 09, 15
Anas, Emran, 0A, 16
Bakhutashvili, Evane, 0C
Bayat, Mahdi, 06
Biondi, Biondo, 0R
Biondi, Ettore, 0R
Boctor, Emad, M., 0C, 16
Brown, Katherine, 02
Byram, Brett C., 03, 0H, 0P, 0S
Caballo, Marco, 0W
Cadena Cerdas, Diego Armando, 18
Carevic, Anita, 09, 15
Chen, Alex, 0C, 16
Chinni, Bhargava, 1D
Choyke, Peter, 0C
Curran, Walter, 0V
Dahl, Jeremy, J., 08, 0E, 0G, 0R
Danala, Gopichand, 1A
Dangi, Shushi, 0T
de Jong, Leon, 0W
de Kort, Chris L., 0W
Deng, Wenjie, 1C
Die Santis, Gianluca, 0X
Dhooge, Jan, 0X
Ding, Mingyue, 0L, 0N, 1C
Dogra, Vikram, 1D
Dormer, James, 02
Eckersley, Robert J., 0O
Ellahaj Youssef, Wajih, 14
Fang, Xiaoyue, 0N
Farshad, Mazda, 0Y
Fatemi, Mostafa, 06
Fel, Baowei, 02
Fernandez-del-Valle, María, 0F
Forseca, Jaime C., 0X
Fujita, Hiroshi, 17
Fulton, Miranda R., 0F
Furuta, Sergio Shiguemi, 18
Galippi, Caterina M., 0D
Gao, Hang, 0X
Gemmke, Hartmut, 0B, 0J
Ghavami, Savash, 06
Givan, Amy H., 0F
Göksel, Orcun, 0Y
Gomez, Alberto, 0O
Groenheits, Vincent, 0W
Güllerlin, Régine, 14
Hajnial, Joseph V., 0O
Hansen, Hendrik H. G., 0W
He, Xiaolu, 0V
Heldafi, Moira, 1A
Helms, Rich, 0U
Herlickhoff, Carl D., 0E
Hesser, Jürgen, 0B
Hlguchi, Shunichi, 17
Hopp, Torsten, 0B, 0J
Hossain, Md Murad, 0D
Hoyt, Kenneth, 02, 0S
Ihl, Ryan, 0S
Iršič, Scott, 08
Jakovljevic, Marko, 0G, 0R
Jarić, Ashish B., 0V
Jennings, Joseph, 0R
Jensen, Jørgen Arendt, 0Q
Jngawali, Kamal, 1D
Jones, Rebecca, 0S
Karlapalem, Aishika, 0F
Kato, Fumi, 0I
Kawabata, Kenichi, 0A, 0I
Kawasaki, Tomonori, 17
Kím, Younsu, 16
Kishimoto, Shun, 0C
Klingersmith, John D., 0F
Krishna, Muralkanti, 0C
Lasaygues, Phillippe, 14
Lei, Yang, 0V
Lenox, Mark, 0C
Li, Sijia, 12
Li, Xiaoping, 1C
Lünte, Christian A., 0T
Li, Daxi, 0T
Li, Tian, 0V
Luchies, Adam, 0P
Machhout, Mohsen, 14
Mallik, Bilal, 0C
Mann, RBse, 0W
Mao, Hull, 0V
Mars, Bogdan, 0W
Marwa, Radi, 14
Merino, María, 0C
Merrill, John A., 13, 1B
Conference Committee

Symposium Chairs

Ronald M. Summers, National Institutes of Health Clinical Center (United States)
Georgia D. Tourassi, Oak Ridge National Laboratory (United States)

Conference Chairs

Brett C. Byram, Vanderbilt University (United States)
Nicole V. Ruiter, Karlsruhe Institut für Technologie (Germany)

Conference Program Committee

Mark A. Anastasio, Washington University in St. Louis (United States)
Jeffrey C. Bamber, The Royal Marsden NHS Foundation Trust (United Kingdom)
Johan G. Bosch, Erasmus University Rotterdam (Netherlands)
Jan D'hooge, Universitair Ziekenhuis Leuven (Belgium)
Marvin M. Doyley, University of Rochester (United States)
Neb Duric, Delphinus Medical Technologies, Inc. (United States)
Stanislav Y. Emelianov, The University of Texas at Austin (United States)
Mostafa Fatemi, Mayo Clinic College of Medicine (United States)
Aaron Fenster, Robarts Research Institute (Canada)
Jérémie Fromageau, The Institute of Cancer Research (United Kingdom)
James F. Greenleaf, Mayo Clinic (United States)
Emma J. Harris, The Institute of Cancer Research (United Kingdom)
Michael Jaeger, Universität Bern (Switzerland)
Jørgen Arendt Jensen, Technical University of Denmark (Denmark)
David H. Kim, Pohang University of Science and Technology (Korea, Republic of)
Roman G. Maeve, University of Windsor (Canada)
Biai H. Mailk, QT Ultrasound LLC (United States)
Stephen A. McAleavey, University of Rochester (United States)
Mohammad Mehrmohammadi, Wayne State University (United States)
Svetoslav I. Nikolov, BK Medical (Denmark)
Olivier Roy, Barbara Ann Karmanos Cancer Institute (United States)
Kai E. Thomenius, Massachusetts Institute of Technology (United States)
François Varray, CREATIS (France)
James W. Wiskin, QT Ultrasound LLC (United States)
Session Chairs

1 Blood Flow
 Marko Jakovijevic, Stanford University School of Medicine (United States)
 Jørgen Arendt Jensen, Technical University of Denmark (Denmark)

2 US Tomography I
 Torsten Hopp, Karlsruhe Institut für Technologie (Germany)
 James W. Wiskin, QT Ultrasound LLC (United States)

3 Elastography, Tissue Classification and Doppler
 Brett C. Byram, Vanderbilt University (United States)
 Arsenii Telichko, Stanford University School of Medicine (United States)

4 US Tomography II
 Mohamed Almekkawy, The Pennsylvania State University (United States)
 Neb Duč, Delphinus Medical Technologies, Inc. (United States)

5 Beamforming and Image Formation
 Adam C. Luchies, Vanderbilt University (United States)
 Bilal H. Malik, QT Ultrasound LLC (United States)

6 Image Processing and Analysis
 Kenneth L. Hoyt, The University of Texas at Dallas (United States)

7 Keynote and New Applications
 Nicole V. Ruiter, Karlsruhe Institut für Technologie (Germany)
 Neb Duč, Delphinus Medical Technologies, Inc. (United States)
2019 Medical Imaging Award Recipients

Robert F. Wagner Best Student Paper Award
Robert F. Wagner was an active scientist in the SPIE Medical Imaging meeting, starting with the first meeting in 1972 and continuing throughout his career. He ensured that the BRH, and subsequently the CDRH, was a sponsor for the early and subsequent Medical Imaging meetings, helping to launch and ensure the historical success of the meeting. The Robert F. Wagner All-Conference Best Student Paper Award (established 2014) is acknowledgment of his many important contributions to the Medical Imaging meeting and his many important advances to the field of medical imaging.

This award is co-sponsored by:

The Medical Image Perception Society

SPIE.

2019 Recipients:

First Place: Volume-of-interest imaging using multiple aperture devices (10984-74)
Wenying Wang, Grace J. Gang, Jeffrey H. Siewerdsen, Joseph W. Stayman, Johns Hopkins University (United States)

Second Place: Surgical aid visualization system for glioblastoma tumor identification based on deep learning and in-vivo hyperspectral images of human patients (10951-35)
Himar Fabelo, The University of Texas at Dallas (USA) and Universidad de Las Palmas de Gran Canaria (Spain); Martín Halicek, The University of Texas at Dallas (United States) and Georgia Institute of Technology & Emory University School of Medicine (United States); Samuel Ortega, Universidad de Las Palmas de Gran Canaria (Spain); Adam Szolna, Jesus Morera, Hospital Universidad de Gran Canaria Doctor Negrin (Spain); Roberto Samiento, Universidad of Las Palmas de Gran Canaria (Spain); Gustavo M. Callicó, Universidad de Las Palmas de Gran Canaria (Spain); Baowei Fei, The University of Texas at Dallas (United States) and The University of Texas Southwestern Medical Center (United States)