Contents

vii Authors
xi Conference Committee
xiii Introduction

KEYNOTE SESSION

10958 03 Will stochastics be the ultimate limiter for nanopatterning? (Keynote Paper) [10958-2]

MEMS/NEMS AND MOEMS I

10958 06 3D printing functional nano-photonic devices by multi-photon lithography (Invited Paper) [10958-5]

MEMS/NEMS AND MOEMS II

10958 09 Grayscale lithography process study for sub 5μm microlens patterns [10958-8]

NANOIMPRINT LITHOGRAPHY I: TECHNOLOGY

10958 0B Nanoimprint system alignment and overlay improvement for high volume semiconductor manufacturing [10958-10]
10958 0C Topography and flatness induced overlay distortion correction using resist drop pattern compensation in nanoimprint systems [10958-11]
10958 0D Substrate conformal imprint lithography: functional resists, overlay performance, and volume production results [10958-12]

NANOIMPRINT LITHOGRAPHY II: MANUFACTURING

10958 0G The advantages of nanoimprint lithography for semiconductor device manufacturing [10958-15]
10958 0H Half-pitch 14nm direct patterning with nanoimprint lithography [10958-16]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTI-BEAM LITHOGRAPHY: INVITED SESSION</td>
<td>Multi-beam mask writer MBM-1000 (invited Paper)</td>
<td>[10958-18]</td>
</tr>
<tr>
<td>DIRECTED SELF-ASSEMBLY I: JOINT SESSION WITH CONFERENCES 10960 AND 10958</td>
<td>Electrical validation of the integration of 193i and DSA for sub-20nm metal cut patterning</td>
<td>[10958-20]</td>
</tr>
<tr>
<td></td>
<td>Spacer patterning lithography as a new process to induce block copolymer alignment by chemo-epitaxy</td>
<td>[10958-21]</td>
</tr>
<tr>
<td></td>
<td>LCDU improvement of EUV-patterned vias with DSA</td>
<td>[10958-22]</td>
</tr>
<tr>
<td>NOVEL PATTERNING AND APPLICATIONS I</td>
<td>Insights on reflection: new ideas gained from comparing femtosecond laser development, microscopy, and patterning (invited Paper)</td>
<td>[10958-23]</td>
</tr>
<tr>
<td></td>
<td>Nanofabrication in extended areas on the basis of nanopositioning and nanomeasuring machines (invited Paper)</td>
<td>[10958-24]</td>
</tr>
<tr>
<td></td>
<td>Next generation of heated atomic force microscope cantilever for nano lithography: modelling, simulation, and nanofabrication</td>
<td>[10958-25]</td>
</tr>
<tr>
<td>NOVEL PATTERNING AND APPLICATIONS II</td>
<td>Patterning challenges for beyond 3nm logic devices: example of an interconnected magnetic tunnel junction</td>
<td>[10958-33]</td>
</tr>
<tr>
<td>NOVEL MATERIALS/NOVEL DIRECTED SELF-ASSEMBLY</td>
<td>Novel approach to sub-5-nm patterning platforms: the self-assembly of metal conjugated bio-inspired molecules</td>
<td>[10958-36]</td>
</tr>
<tr>
<td></td>
<td>An alternative line-space shrink EUVL plus complementary DSA lithography</td>
<td>[10958-37]</td>
</tr>
<tr>
<td>POSTER SESSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10958 14</td>
<td>Oxygen effects in thin films for high-resolution, 3-color lithography [10958-39]</td>
<td></td>
</tr>
<tr>
<td>10958 16</td>
<td>Evaluation of adhesion layers performances for soft UV nanoimprint lithography [10958-41]</td>
<td></td>
</tr>
<tr>
<td>10958 18</td>
<td>Gas permeable mold for defect reduction in nanoimprint lithography [10958-43]</td>
<td></td>
</tr>
<tr>
<td>10958 19</td>
<td>Integrated soft UV-nanoimprint lithography in a nanopositioning and nanomeasuring machine for accurate positioning of stamp to substrate [10958-44]</td>
<td></td>
</tr>
<tr>
<td>10958 1D</td>
<td>Spatial coherence properties of an LED-based illumination system for mask-aligner lithography [10958-48]</td>
<td></td>
</tr>
<tr>
<td>10958 1E</td>
<td>Beyond contrast curve approach: a grayscale model applied to sub-5μm patterns [10958-49]</td>
<td></td>
</tr>
<tr>
<td>10958 1F</td>
<td>Tilted ion implantation of spin-coated SiARC films for sub-lithographic and two-dimensional patterning [10958-50]</td>
<td></td>
</tr>
<tr>
<td>10958 1K</td>
<td>Defects in nano-imprint lithography line patterns: computational modelling and measurement accuracy [10958-56]</td>
<td></td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B…0Z, followed by 10-1Z, 20-2Z, etc.

Alloufi, Naclima, 09, 1E
Arnold, John, 0L
Asano, Toshif, 0G
Babaei Gavan, K., 0Y
Bérand-Berger, Sébastien, 09, 1E
Bernasconi, Johana, 1D
Beylier, Charlotte, 1E
Cherala, Anshuman, 0C
Chevallier, Pierre, 09 1E
Chevallier, X., 0M, 16
Chi, Cheng, 0N
Choi, Jin, 0C
Connelly, Daniel, 1F
Constantoudis, Vasileios, 1K
Coquard, Rémi, 09
Carlos, Daniel A., 0L, 0N
Court, S., 0Y
Delachat, F., 16
DiPaola, Domenico A., 0N
Ercken, M., 0Y
Farrell, Richard, 0L
Farys, Vincent, 1E
Felix, Nelson M., 0L, 0N
Feils, Jonathan R., 0Q
Fourkas, John T., 14
Fukuhara, Kazuya, 0H
Gharbi, A., 0M
Gogolides, Evangelos, 1K
Guo, Jing, 0L, 0N
Gutiérrez Razo, Sandra A., 14
Hanabata, Makoto, 18
Hatano, Yasuyuki, 0H
Hayashi, Tatsuya, 0B
Hayashi, Tomohiko, 0G
Herr, Daniel, 11
Herzog, Hans Peter, 1D
Hetzer, David, 0L
Hitura, Hirono, 0G
Hitura, Millsu, 0B, 0C
Hockey, Mary Ann, 12
Hoffmann, Martin, 19
Hofmann, Martin, 19
Husseln, Ahmed, 0C
Iida, Yasuyuki, 0L
Ilino, Satoshi, 0C
Im, Se-Hyuk, 0C
Iwamaga, Takehiko, 0B, 0G
James, Dustin W., 0N
Johnson, Richard C., 0N
Jussot, J., 0Y
Kato, Hirokazu, 0H
Kehagias, Nikolaos, 1K
Kimura, Hayato, 0J
Kirchner, Johannes, 19
Köhler, Ronald, 1D
Ko, Akiteru, 0L
Komaki, Takamitsu, 0B
Kono, Takuya, 0H
Kuebler, Stephen M., 06
Kuroda, Takuya, 0N
Lal, Kaifal, 0L
Le Pennec, A., 0M
Larios, Nikolaos, 14
Lu, Chi-Chun, 0L, 0N
Lu, Bic, 0L
Lu, Tsu-Joe King, 1F
Mack, Chris A., 03
Manske, Eberhard, 0P, 19
Marolle, D., 0M
Martinez, Noel P., 06
Masahiko, Harumoto, 0N
Mastylo, Rostyslav, 19
Matsumoto, Hiroshi, 0J
Meissl, Mario, 0C
Mell, Luciana, 0N
Mignot, Yann, 0L, 0N
Minfer, Ryan, 0C
Mizui, Kento, 18
Morohoshi, Hiroshi, 0B
Mortini, Benedicte, 09
Muramatsu, Makoto, 0L
Nakasugi, Tetsuro, 0H
Nakayama, Takahiro, 0G
Navarro, Christophe, 0M, 16
Nealey, P., 0M
Nicolet, Célia, 0M, 16
Noell, Willfried, 1D
Oehrlin, Gottlieb, 14
Ohfushi, Kenji, 0U
Palin, L., 0M, 16
Papavero, George, 1K
Paquet, A., 0M
Paris, Marion, 1E
Pathiraja, Gayani, 11
Petersen, John, 14
Peterson, B. L., 0O
Pourtet, M.-L., 0M
Conference Committee

Symposium Chair
Will Conley, Cymer, an ASML Company (United States)

Symposium Co-chair
Kafai Lai, IBM Thomas J. Watson Research Center (United States)

Conference Chair
Martha I. Sanchez, IBM Research - Almaden (United States)

Conference Co-chair
Eric M. Panning, Intel Corporation (United States)

Conference Program Committee
Alan D. Brodie, KLA Corporation (United States)
Juan J. de Pablo, The University of Chicago (United States)
Richard A. Farrell, TEL Technology Center, America, LLC (United States)
Naoya Hayashi, Dai Nippon Printing Company, Ltd. (Japan)
Tatsuhiko Higashiki, Toshiba Corporation (Japan)
Erik R. Hosier, GLOBALFOUNDRIES Inc. (United States)
J. Alexander Liddle, National Institute of Standards and Technology (United States)
Chi-Chun Liu, IBM Corporation (United States)
Hans Loeschner, IMS Nanofabrication GmbH (Austria)
John G. Maltabes, Applied Materials GmbH & Company KG (United States)
Laurent Pain, CEA-LETI (France)
Ivo W. Rangelow, Technische Universität Ilmenau (Germany)
Douglas J. Resnick, Canon Nanotechnologies, Inc. (United States)
Ricardo Ruiz, HGST (United States)
Chandrasekhar Sarma, Intel Corporation (United States)
Heinmut Schiff, Paul Scherrer Institut (Switzerland)
Ines A. Stoiberg, Vistec Electron Beam GmbH (Germany)
Hsinyu Tsai, IBM Research - Almaden (United States)
Kevin T. Turner, University of Pennsylvania (United States)
Marco J. Wieland, MAPPER Lithography (Netherlands)
Wei Wu, The University of Southern California (United States)
Session Chairs

1 Keynote Session
 Martha I. Sanchez, IBM Research - Almaden (United States)
 Eric M. Panning, Intel Corporation (United States)

2 MEMS/NEMS and MOEMS I
 J. Alexander Liddle, National Institute of Standards and Technology (United States)
 John G. Maltabes, Applied Materials GmbH & Company KG (United States)

3 MEMS/NEMS and MOEMS II
 Hsinyu Tsai, IBM Research - Almaden (United States)
 Alan D. Brodie, KLA Corporation (United States)

4 Nanoimprint Lithography I: Technology
 Chi-Chun Liu, IBM Corporation (United States)
 Chandrasekhar Sarma, Intel Corporation (United States)

5 Nanoimprint Lithography II: Manufacturing
 Douglas J. Resnick, Canon Nanotechnologies, Inc. (United States)
 Tatsuhiko Higashiki, Toshiba Corporation (Japan)

6 Multi-beam Lithography: Invited Session
 Ines A. Stolberg, Vistec Electron Beam GmbH (Germany)
 Hans Loeschnar, IMS Nanofabrication GmbH (Austria)

7 Directed Self-assembly I: Joint Session with Conferences 10960 and 10958
 Raluca Tiron, CEA-LETI (France)
 Ricardo Ruiz, HGST (United States)

8 Novel Patterning and Applications I
 Naoya Hayashi, Dai Nippon Printing Co., Ltd. (Japan)
 Erik R. Hosier, GLOBALFOUNDRIES Inc. (United States)

9 3-D Printing and Structures: Invited Session
 Ivo W. Rangelow, Technische Universität Ilmenau (Germany)
 Richard A. Farrell, TEL Technology Center, America, LLC (United States)

10 Neuromorphic Computing: Invited Session
 Laurent Pain, CEA-LETI (France)
 J. Alexander Liddle, National Institute of Standards and Technology (United States)
11 Novel Patterning and Applications II
Martha I. Sanchez, IBM Research - Almaden (United States)
Eric M. Panning, Intel Corporation (United States)

12 Novel Materials/Novel Directed Self-assembly
Martha I. Sanchez, IBM Research - Almaden (United States)
Eric M. Panning, Intel Corporation (United States)
Introduction

The Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2019 Conference is a forum for new solutions to meet current and future patterning challenges. Extending scaling or complementing existing approaches is in scope and this year we expanded beyond traditional wafer patterning to address emerging patterning challenges in MEMS/NEMS and MOEMS with 2 sessions of invited speakers.

The MEMS/NEMS and MOEMS space is at the interface between microelectronics and the physical world, acting often as sensors or actuators in the automobile industry, medical devices and military, for example. They face challenges defined by patterning high aspect ratio features and extreme topography with similar critical dimensions to microelectronics in cases. Successful patterning requires meeting complex material, mechanical and topology constraints.

This year the Novel Patterning Conference had 56 invited and contributed papers. The conference began on Monday afternoon with two Keynote presentations. A third Keynote talk on Tuesday morning kicked off the new MEMS/NEMS and MOEMS topic. There were 7 major topics, 12 oral sessions, and a poster session held on Wednesday evening.

The conference kicked off with two Keynote presentations, Donald Tennant, from Cornell University (United States), spoke about “The evolution of the Cornell NanoScale Facility and synergies with the semiconductor industry”. He discussed the history leading up to the Cornell NanoScale Facility and the range of projects researched at the CNF serving industry and academia. Chris Mack’s (Fractilia, United States) talk “Will stochastics be the ultimate limiter for nanopatterning?” further elaborated on Tennant’s Law. Combined, the talks reviewed the tremendous progress made in patterning as well as the challenges ahead in achieving further resolution improvement without running into stochastics limitations.

The third Keynote presentation was from Daniel Lopez from Argonne National Laboratory (United States). His talk “Integration of metasurfaces onto micro electro mechanical systems for active control of visible and IR light” began our 2 Invited sessions on MEMS/NEMS and MOEMS. Metasurfaces in optics is a way of achieving high quality imaging with minimal stack height by material choice and placement.

There were two more new topics, both invited sessions on Neuromorphic Computing and 3D Printing. Additionally, there was an invited session on multi-
beam lithography, two sessions on nanoimprint, a DSA joint session with the Advances in Patterning Materials and Processes Conference covering new materials, integration, and characterization, and three sessions on novel patterning and/or materials.

Finally, we would like to thank those program committee members who took the time and effort to review abstracts and contributed to making a technically strong program. We look forward to expanding our novel patterning topics, and your continued contributions to new patterning technologies. One new topic for 2020 will be flat panel displays and advanced packaging tools/techniques.

Martha I. Sanchez
Eric M. Panning