Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019

Anne-Sophie Poulin-Girard
Joseph A. Shaw

Editors

21–24 May 2019
Quebec City, Quebec, Canada

Sponsored by
ICO–International Commission for Optics
IEEE–The Photonics Society
The Optical Society
SPIE

Organized by
Université Laval (Canada)
Centre d’Optique, Photonique et Laser (Canada)

Published by
SPIE

Volume 11143
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors/Mentor</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>xv</td>
<td>Conference Committees</td>
<td></td>
</tr>
<tr>
<td>xix</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>11143 03</td>
<td>Max Planck School of Photonics: research-oriented photonics education in a network of excellence throughout Germany</td>
<td>[11143-161]</td>
</tr>
<tr>
<td>11143 04</td>
<td>Stringent and result-oriented training requirements at the heart of research funding opportunities: the case of the CSA FAST funding activity and the HiCIBaS project</td>
<td>[11143-130]</td>
</tr>
<tr>
<td>11143 05</td>
<td>NSF’s support for education and training of the optics and photonics workforce (Invited Paper)</td>
<td>[11143-175]</td>
</tr>
<tr>
<td>11143 06</td>
<td>Concept and development of research-oriented education in the university context</td>
<td>[11143-158]</td>
</tr>
<tr>
<td>11143 07</td>
<td>Engaging undergraduate students in the Philippines in photonics research with a novel publication-driven online mentoring approach</td>
<td>[11143-131]</td>
</tr>
<tr>
<td>11143 08</td>
<td>Teaching undergraduate students integrated photonics and fabrication through research</td>
<td>[11143-150]</td>
</tr>
</tbody>
</table>

TRAINING USING SPECIALIZED SOFTWARE AND PLATFORMS AS PRACTICAL TOOLS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors/Mentor</th>
</tr>
</thead>
<tbody>
<tr>
<td>11143 0A</td>
<td>Demonstration polarization phenomenon and laser system simulation by software in university lecture course</td>
<td>[11143-83]</td>
</tr>
<tr>
<td>11143 0D</td>
<td>Teaching photonic integrated circuits with Jupyter notebooks: design, simulation, fabrication</td>
<td>[11143-9]</td>
</tr>
<tr>
<td>11143 0E</td>
<td>Teaching digital holography through an interface in Java</td>
<td>[11143-19]</td>
</tr>
<tr>
<td>11143 0F</td>
<td>Lidar: a new self-driving vehicle for introducing optics to broader engineering and non-engineering audiences</td>
<td>[11143-138]</td>
</tr>
<tr>
<td>11143 0G</td>
<td>Open source photonics at the Abbe School of Photonics: How Makerspaces foster open innovation processes at universities</td>
<td>[11143-162]</td>
</tr>
<tr>
<td>11143 0H</td>
<td>A free spectroscopic databank of optical constants for use in optics education and modeling: complex refractive index data n and k from 1.0 to 25 μm</td>
<td>[11143-174]</td>
</tr>
</tbody>
</table>
OPTICS AND PHOTONICS EDUCATION IN DIVERSE, REMOTE OR UNDERPRIVILEGED COMMUNITIES

11143 OK Interactive teaching methods of optoelectronics for enhancing engagement of under-represented groups [11143-144]

11143 OL Optometry outreach for diverse middle school students [11143-156]

SOFTSKILLS: ENHANCING TECHNICAL TRAINING

11143 OM Creating confident scientific writers engaged in productive writing and editing using a portfolio approach [11143-3]

CURRICULUM DEVELOPMENT AND IMPROVEMENT

11143 OO Developing updated physical optics curriculum: incorporating the neglected reality of non-interaction of waves (NIW) [11143-16]

11143 OP Integrating fiber optics into electronic communications curriculum [11143-18]

11143 OR Undergraduate course on biomedical imaging at a liberal arts college [11143-26]

11143 OU Quantum harmonic oscillator fluorescence [11143-61]

AR/VR FOR OPTICS AND PHOTONICS EDUCATION

11143 OV Training in polarization through a virtual learning environment [11143-87]

11143 OW Web-based interactive simulations and virtual lab for photonics education [11143-136]

ONLINE CLASSROOM AND REMOTE LEARNING

11143 OY Integrated photonics and application-specific design on a massive open online course platform (Invited Paper) [11143-151]

11143 OZ Harnessing peer instruction in and out of class with myDALITE [11143-89]

11143 11 Instructional design of problem-based teaching in Optical System Design course using informatization teaching resources [11143-125]
<table>
<thead>
<tr>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studying the transition from light emitting diodes to semiconductor lasers in applied physics laboratories</td>
<td>11143-43</td>
</tr>
<tr>
<td>Laboratory training in silicon photonics for undergraduate and graduate students</td>
<td>11143-59</td>
</tr>
<tr>
<td>Some remarks of teaching "The Concepts in Experimental Optics" for students in natural sciences in Brazil</td>
<td>11143-17</td>
</tr>
<tr>
<td>CCCC and LASER-TEC educational Raman spectrometer demo</td>
<td>11143-141</td>
</tr>
<tr>
<td>Public domain optics: experimental gems from pre-1923 textbooks (Invited Paper)</td>
<td>11143-153</td>
</tr>
<tr>
<td>Simple optical setup for the undergraduate experimental measurement of the refractive indices and attenuation coefficient of liquid samples and characterization of laser beam profile</td>
<td>11143-112</td>
</tr>
<tr>
<td>Quantum optics laboratories for teaching quantum physics</td>
<td>11143-123</td>
</tr>
<tr>
<td>A modular laboratory curriculum for teaching integrated photonics to students with diverse backgrounds</td>
<td>11143-142</td>
</tr>
<tr>
<td>A tabletop line-of-sight stabilization demonstrator for STEM outreach activities</td>
<td>11143-24</td>
</tr>
<tr>
<td>The disassembly and re-purposing of unwanted consumer electronics: low-cost tools for optics outreach</td>
<td>11143-66</td>
</tr>
<tr>
<td>A tabletop adaptive optics demonstrator for STEM outreach activities</td>
<td>11143-25</td>
</tr>
<tr>
<td>A STEM outreach tool for demonstrating the sensing and compensation of atmospheric turbulence</td>
<td>11143-98</td>
</tr>
<tr>
<td>Problem-based learning in advanced photonics manufacturing: bringing real-world applications to the classroom</td>
<td>11143-102</td>
</tr>
<tr>
<td>Photonics education in Switzerland on Bachelor and Master level triggered by industrial needs</td>
<td>11143-28</td>
</tr>
</tbody>
</table>
A modular industry-centered program for photonics and integrated photonics certification [11143-94]

OPTICS IN NATURE AND IN OUR SURROUNDINGS

- **11143 IN** Light and lilacs: an interactive exploration of colorimetry [11143-163]
- **11143 IO** Astronomical events and their impact on knowledge transfer in optics and photonics [11143-30]
- **11143 IP** Near infrared photography of atmospheric optical phenomena [11143-32]
- **11143 IQ** Extended visual range: an observation during a total solar eclipse [11143-33]

ART AND PHOTONICS

- **11143 IR** Art and photonics [11143-45]
- **11143 IS** When outreach in optics meets architecture: the optical terrace [11143-105]

INDUSTRY AND ACADEMIA INTERACTION IN EDUCATION II

- **11143 IV** Examination optical education role of university for optical industry and efforts at Chiba Institute of Technology [11143-114]
- **11143 IW** The intricate and symbiotic relationship between educational institutions and the industry [11143-146]
- **11143 IX** The company at university laboratory like efficient means for training of future engineers [11143-154]

IN-COMPANY TRAINING AND INTERNSHIPS

- **11143 IZ** Industry training on on-wafer optoelectronic vector network analysis [11143-52]
- **11143 IO** Apprenticeship: precision optics manufacturing technician [11143-91]
- **11143 I1** Construction of school-enterprise cooperation platform to improve the practical ability of professional degree master based on PBL mode [11143-166]
DEVELOPMENT OF MULTIDISCIPLINARY TRAINING PROGRAMS

11143 24	Optics education for multidisciplinary students: how to focus on the relationship between optical technology and human civilization in group discussion [11143-133]
11143 26	Educating and training biomedical researchers in biophotonics and advanced light microscopy methods [11143-173]
11143 27	Graduate programs in biophotonics: unique transdisciplinary training in applied photonics for the life sciences [11143-51]

PROBLEM-, PROJECT- AND CASE-BASED LEARNING

| 11143 28 | Implementation of problem-based teaching and learning in advanced professional courses for optics related majors [11143-36] |
| 11143 2A | Project-based optical design practice course and teamwork: from a programmer to a lens designer [11143-90] |

PROGRAM EVALUATION

| 11143 2C | Method of continuous improvement of multidisciplinary programs and outreach activities [11143-41] |

LIGHT SOURCES AND RADIOMETRY IN EDUCATION

11143 2E	Lab-based radiometric concepts for undergraduate and graduate students (Invited Paper) [11143-143]
11143 2F	Satisfactory role of LEDs as a light receiving component and their uses in science demonstration experiments for educational purposes [11143-79]
11143 2G	Illumination optics for solid-state lighting [11143-149]

NOVEL MODELS AND METHODS FOR PHOTONICS EDUCATION

| 11143 2H | On the use of reflective writing in an introductory photonics course (Invited Paper) [11143-54] |
| 11143 2J | Let us complete the puzzle together: a jigsaw cooperative learning trial on optical graduate course [11143-42] |
K12 EDUCATION AND OUTREACH INITIATIVES

11143 2L Exploratory science learning in a high school curriculum, using structured materials and light polarization (Invited Paper) [11143-78]

11143 2M OPTIKS: Outreach for professionals who teach in informal environments and K-12 schools [11143-20]

11143 2N The Optics Suitcase: educational outreach tool for inspiring careers in light [11143-97]

11143 2O Increasing photonics awareness for youngsters using technology boot camps [11143-103]

11143 2P Enlightening students: optics applications in the math classroom [11143-56]

11143 2R Light-based educational outreach activities for pre-university students [11143-71]

POSTER SESSION

11143 2S Is a glowing LED meaningful to determine the Plank's constant accurately? [11143-1]

11143 2T Creation of an engineering course: design and simulation of high-capacity fiber optic systems utilizing VPI-photonics [11143-4]

11143 2U Blended learning strategies on teaching light concepts for underprivileged school students [11143-6]

11143 2W Educational opto-mechatronic apparatus to calculate the refractive index of liquids based on Snell's Law [11143-11]

11143 2X Medical laser safety [11143-13]

11143 2Y A survey on hybrid problem-based learning in a digital image processing course [11143-22]

11143 2Z Optoelectronic NOR gates and rotating drum memory illuminate logic [11143-27]

11143 30 An innovative practical teaching model based on information technology [11143-35]

11143 34 International Day of Light (IDL): a new forum for interdisciplinary learning concepts in optics and photonics [11143-44]

11143 35 Flipped-classroom with interactive videos in first year undergraduate physics course in Hong Kong [11143-46]

11143 36 An optoelectronic integrated design practice project: laser countermeasure, reconnaissance alarm, and jamming system [11143-48]

11143 37 Teaching reform and practice of optoelectronic technology curriculum [11143-49]
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1143.38</td>
<td>Education development employing latest free space optical research papers for undergraduate communication engineering students in class and examination [11143-50]</td>
</tr>
<tr>
<td>1143.39</td>
<td>A pilot study of optics laboratory activities impact on students connections between theory and experiment [11143-62]</td>
</tr>
<tr>
<td>1143.3A</td>
<td>Bringing reality in physics: System engineering approach to optical phenomena following Huygens’ Principle [11143-65]</td>
</tr>
<tr>
<td>1143.3B</td>
<td>Study on the feasibility of classified cultivation for master majoring in precision optical engineering [11143-67]</td>
</tr>
<tr>
<td>1143.3C</td>
<td>Using free space optics research to teach optics and optoelectronics [11143-68]</td>
</tr>
<tr>
<td>1143.3F</td>
<td>CCCC and LASER-TEC laser eye safety experiment/lab [11143-76]</td>
</tr>
<tr>
<td>1143.3G</td>
<td>Exploration and practice of teaching reform on photoelectric comprehensive experiments [11143-80]</td>
</tr>
<tr>
<td>1143.3I</td>
<td>Application of micro-course video in optical manufacturing technology [11143-86]</td>
</tr>
<tr>
<td>1143.3J</td>
<td>Error-detection tasks and peer feedback for engaging physics students [11143-95]</td>
</tr>
<tr>
<td>1143.3N</td>
<td>Teaching research and practice of integrated design experiment in photoelectric courses [11143-121]</td>
</tr>
<tr>
<td>1143.3O</td>
<td>One flipped classroom teaching model on the course of applied optics [11143-124]</td>
</tr>
<tr>
<td>1143.3P</td>
<td>Exploration of energy levels using diffraction gratings [11143-127]</td>
</tr>
<tr>
<td>1143.3Q</td>
<td>Optics for everyone: measuring the results after five years of work [11143-129]</td>
</tr>
<tr>
<td>1143.3S</td>
<td>The photoelectric effect: project-based undergraduate teaching and learning optics through a modern physics experiment redesign [11143-135]</td>
</tr>
<tr>
<td>1143.3T</td>
<td>Increased knowledge transfer through the integration of research projects into university teaching [11143-140]</td>
</tr>
<tr>
<td>1143.3V</td>
<td>Thermal imaging and heat islands: cross-discipline learning in optics and meteorology [11143-160]</td>
</tr>
<tr>
<td>1143.3W</td>
<td>Similarities and differences in microwave and optical radiation detection [11143-168]</td>
</tr>
<tr>
<td>1143.3X</td>
<td>Experiential learning of data acquisition and sensor networks with a cloud computing platform [11143-200]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abraham, Thomas, 26
Adams, Rhys, 0Z, 3J
Agarwal, Anuradha, 0W, 1C
Alarcon, Minella C., 07
Alexander, Alonzo B., 0L
Allain, Guillaume, 04, 1S
Al-Qaisi, Sh., 2X
Al-Rubaiee, M., 2X
Andersson-Engels, Stefan, 2C
Andre, Laura B., 1H
Araiza-Esquível, Ma., 0E
Badawi, Abeer, 38
Banach, Catherine A., 0I
Banet, Matthias T., 1N
Beasley, Gary, 17, 3F
Belloni, Mario, 0U
Bernacki, Bruce E., 0I
Best, Sabine, 0H
Bhatnagar, Sameer, 0Z
Bogaerts, Wim, 0D
Boily, Olivier, 1S
Book, Brendan, 3S
Bowers, John E., 2R
Boye, Daniel, 0U
Brady, Brittany A., 39
Brewer, Tyler, 1D, 1F
Brooks, Henry, 0U
Brouillette, Yann, 0Z
Brousseau, Denis, 04
Buenaventura, Asia, 07
Burton, Sarah D., 0I
Cain, Laurence, 0U
Campos, J., 0V
Cardenas, Jaime, 0Y, 1C
Cassar, Marie T., 39
Cen, Zhao Feng, 2A
Chan, Philip, 2R
Charles, Elizabeth S., 0Z, 3J
Chau, Colleen, 3X
Chen, Lawrence R., 2H
Cheng, Xiangai, 3O
Chong, Katie E., 3S
Choudhury, Sanjat Ahmed, 1N
Chrostowski, Lukas, 08
Chua, Annelle R., 07
Cooper, Matthew, 1D, 1F, 11
Côté, Olivier, 04
Cruz, J. D. Vera, 1F
Cunningham, Robert, 3S

Curticapean, Dan, 06, 1O, 1R, 34, 3T
Danner, Aaron J., 18
De Koninck, Paul, 27
DeGroot, Paul, 27
Deschénes, Andréanne, 27
Deveney, Edward, 1C, 1M
Dianat, Pouya, 0K
Dingel, Benjamin B., 07
Diop, Julie, 1C, 1M
Dong, Liquan, 28, 2J
Donnelly, Judith F., 1K, 2P
Donnelly, Matthew J., 2P
Draham, Robert, 1N
Duan, Chengfang, 30, 3N
Dugdale, Michael, 0Z, 3J
Dunn, Kaitlin J., 1N
Durst, Michael E., 0R
Eghbal, Morad Khasrazi, 2T
El Aziz, Ahmed Abd, 38
Escalera, J. C., 0V
Fang, Qiyin, 3X
Francis, Ryan M., 0I
Friedensen, Sarah, 0U
Fujimoto, Yashin, 1V
Gagnon, Gerald, 1C
Galabada Dewage, Ashan Arinyawasana, 1N
Galibois, Stéphane, 1W
Galvez, Enrique J., 1A
Garza, Marilyn, 2R
Gauthier, Jean-Christophe, 1S
Geiss, Reinhard, 03, 0H
Ghosh, Sumit, 2U
Gilchrist, Pamela O., 0L
Godina, Pilar C., 0E
Greer, Amelia, 0S
Gu, Guiru, 1C, 1M
Gu, Jihua, 37
Gunther, Jacqueline E., 2C
Hagen, Nathan, 2L
Hajek, Lukas, 1X
Hamdy, Kareem W., 2R
Hansstedt, Paul, 0M
Hao, Qun, 11, 21, 28, 3I
Hasegawa, Makoto, 2F
Heitz, Benjamin, 1O, 1R, 34
Helgert, Christian, 0H
Hengster, Julia, 03
Hernandez-Gomez, C. R., 2W
Heuscher, Lena, 3V
Saunders, Danielle L., 0I
Schnitzer, Cheryl, 1C, 1M
Sengupta, Dipankar, 19
Serna, Samuel, 0W, 1C
Shadaram, Mehdi, 2T
Shaw, Joseph A., 1P, 1Q, 3V
Shen, Zixiong, 2Y
Shi, Feng, 3B
Shi, Jianhua, 3G, 3N
Si, Ke, 24
Siahmakoun, Azad, 13
Simon, David, 1M
Smith, Steven C., 0I
Song, Ci, 3B
Song, Meiting, 1C
Song, Yong, 2J, 3I
Spencer, Mark F., 1I
Stanton, Eric, 2R
Su, Yin-Fong, 0I
Suizu, Koji, 1V
Suzuki, Yasuyo, 2L
Szecsody, James E., 0I
Takaki, Nicholas, 1N
Tan, Songxin, 2Y
Taylor, Brennan, 1D, 1F
Thériault, Gabrielle, 1W
Thibault, Simon, 04
Thornton, Douglas E., 1I
Threlkeld, Evan, 1D, 1F
Tian, Ye, 3B
Tie, Guipeng, 3B
Ting, Fridolin S. T., 35
Tirfessa, Negussie, 3A
Tjan, Janice, 1C
Tonkyn, Russell G., 0I
Tower, Sari, 1M
Tufaile, Adriana P. B., 16
Tufaile, Alberto, 16
Tünnermann, Andreas, 03
Ung, Bora, 19
Vallée, Cédric, 04
van Niekerk, Mathew, 1C
VanKouwenberg, Jim, 20
Vargas, Stacia K., 0M, 3C
Vasinek, Vladimir, 1X
Vauderwange, Oliver, 06, 1O, 1R, 34, 3T
Vazehgoo, Farhad, 1C
Vega-Torres, G., 2W
Verlage, Erik, 0W, 0Y, 1C
Viera-González, Perla Marlene, 3P, 3Q
Vikupitz, Connor, 11
Villagrana Barraza, Santiago, 0E
Vogel, Edward, 2Z
Vollmer, Michael, 12, 1P, 1Q
Wakita, Kazuki, 1V
Wang, Dongxiao, 21
Wang, Kaiwei, 24
Wang, Qianqian, 21, 3I
Wang, Shanshan, 21, 28, 2J, 3I
Wang, Shuping, 0P
Wang, Wei, 30, 3G, 3N
Whittaker, Chris, 0Z, 3J
Witt, Donald, 08
Wong, Ka-Lai, 35
Wong, Nicholas H. L., 1Z
Wu, Dan, 37
Xiao, Hang, 3B
Xie, Wenke, 36
Xu, Di, 1N
Xu, Jianfeng, 2A
Xu, Zhongjie, 3O
Yang, Qing, 24
Ye, Yan, 37
Yzuel, M. J., 0V
Zako, David, 0H
Zannini, Matthew, 3F
Zhang, Guiju, 37
Zhang, Lijun, 21
Zhang, Shaohui, 28
Zhao, Yuejin, 28, 2J
Zhong, Hairong, 30, 36, 3N, 3O
Zhou, Junqiang, 1Z
Zhou, Quan, 36
Zhou, Ya, 28, 2J, 3I
Conference Committees

Conference Chairs

Anne-Sophie Poulin-Girard, Université Laval (Canada)
Joseph A. Shaw, Montana State University (United States)

Conference Program Committee

Julie Bentley, University of Rochester (United States)
Caroline Boudoux, École Polytechnique de Montréal (Canada)
Curtis Burrill, The Optical Society
Santiago Camacho Lopez, CICESE (Mexico)
Lawrence Chen, McGill University (Canada)
Cristiano Cordeiro, Universidade Estadual de Campinas (Brazil)
Jessica DeGroote Nelson, Optimax, Ltd. (United States)
Colette DeHarpporte, LASER Classroom (United States)
Judy Donnelly, Three Rivers Community College (United States)
Dirk Fabian, SPIE
Qiying Fang, McMaster University (Canada)
Andrew Forbes, University of the Witwatersrand (South Africa)
David Hagan, CREOL, The College of Optics and Photonics (United States)
Vengu Lakshminarayanan, University of Waterloo (Canada)
Lauren Mecum, IEEE Photonics Society
Marc Nantel, Niagara College (Canada)
Yukitoshi Otani, CORE, Utsunomiya University (Japan)
Thomas Pertsch, Universität Jena (Germany)
Stephen Pompea, National Optical Astronomy Observatory (United States)
Doug Razzano, IEEE Photonics Society
Alan Shore, Bangor University (United Kingdom)
Cristina E. Solano, Centro de Investigaciones en Optica (Mexico)
María J. Yzuel, Universitat Autònoma de Barcelona (Spain)
Victor Zadkov, Institute of Spectroscopy, Russian Academy of Sciences (Russian Federation)
Mourad Zghal, University of Carthage (Tunisia)
Xi-Cheng Zhang, University of Rochester (United States)

Conference Organizing Committee

Rhys Adams, Vanier College (Canada)
Claudine Allen, Université Laval (Canada)
Alexandre April, Cégep Garneau (Canada)
Martin Bernier, Université Laval (Canada)
Dominic Boudreau, Centre de Démonstration en Sciences Physiques (Canada)
Diane Déziel, Centre d’optique, Photonique et Laser (Canada)
Suzie Dufour, INO (Canada)
Mathieu Fortin, Cégep de Ste-Foy (Canada)
Jean-Christophe Gauthier, Université Laval (Canada)
Sophie Larochelle, Université Laval (Canada)
Simon Rainville, Université Laval (Canada)
Madison Rilling, Université Laval (Canada)
Leslie Rusch, Université Laval (Canada)
Geneviève Taurand, Bentley Systems, Inc. (Canada)
Gabrielle Thériault, Gentec Electro-Optics (Canada)
Simon Thibault, Université Laval (Canada)
Véronique Zambon, Telops, Inc. (Canada)

Session Chairs

1 Higher Education: Education through Publication and Research
 Qiyin Fang, McMaster University (Canada)

2 New Technologies: Training Using Specialized Software and Platforms as Practical Tools
 Simon Rainville, Université Laval (Canada)

3 Higher Education: Curriculum Development and Improvement
 Aaron Danner, National University of Singapore (Singapore)

4 Challenges: Optics and Photonics Education in Diverse, Remote and or Underprivileged Communities
 Dirk Fabian, SPIE

5 Challenges: Softskills: Enhancing Technical Training
 Dirk Fabian, SPIE

6 New Technologies: AR/VR for Optics and Photonics Education
 Joseph A. Shaw, Montana State University (United States)

7 New Technologies: Online Classroom and Remote Learning
 Guillermo E. Sanchez-Guerrero, Universidad Autónoma de Nuevo León (Mexico)

8 Higher Education: Laboratory Curriculum and Experiments for Hands-On Training
 Suzie Dufour, INO (Canada)
 Yukitoshi Otani, CORE, Utsunomiya University (Japan)

9 K12 and Outreach: Hands-On Experiments and Demonstrations for Young Audiences
 Mike McKee, CREOL, The College of Optics and Photonics (United States)
10 Industry: Optics and Photonics Curriculum and Programs
Matthew Posner, Excelitas (Canada)

11 Art and Nature: Optics in Nature and in Our Surroundings
Perla Maria Viera Gonzalez, Universidad Autónoma de Nuevo León (Mexico)

12 Art and Nature: Art and Photonics
Perla Maria Viera Gonzalez, Universidad Autónoma de Nuevo León (Mexico)

13 Industry: Industry and Academia Interaction in Education
Jessica DeGroote Nelson, Optimax, Ltd. (United States)

14 Industry: In-company Training and Internships
Gabrielle Thériault, Gentec-EO (Canada)

15 Higher Education: Development of Multidisciplinary Training Programs
María J. Yzuel, Universitat Autònoma de Barcelona (Spain)

16 Pedagogical Approaches: Problem-, Project- and Case-Based Learning
Nicholas M. Massa, Springfield Technical Community College (United States)

17 K12 and Outreach: Program Evaluation
Anne-Sophie Poulin-Girard, Université Laval (Canada)

18 Higher Education: Light Sources and Radiometry in Education
Michael Vollmer, Technische Hochschule Brandenburg (Germany)

19 Pedagogical Approaches: Novel Models and Methods for Photonics Education
Rhys Adams, Vanier College (Canada)

20 K12 and Outreach: K12 Education and Outreach Initiatives
Cristina E. Solano, Centro de Investigaciones en Óptica (Mexico)
Introduction

Since the first meeting in 1988 in San Diego, California (United States), ETOP has traveled around the world, bringing together leading experts and educators around the topic of high-quality training in optics and photonics at all levels. Along the way, ETOP has integrated the efforts of four professional organizations around a common goal: advancing and sharing knowledge in education in our field.

Light and light-based technologies touch the daily lives of everybody and are central to the future development of the global society. Innovation in education is essential to solving the grand challenges faced by the optics and photonics community. We need leading education programs at all levels and relevant continuous training for the workforce, to be welcoming and inclusive with the future and current professionals, and to reach out to the young people and the general public to meet the growing demands of research, science and industry.

This year’s technical program was rich and diverse with the community’s contribution. It was divided into five tracks discussing Higher Education; the use of New Technologies, Industry training, Pedagogical Methods, and K-12 and Outreach. Two special sessions addressed the special topics of Challenges in Optics, and Optics and Nature.

We look forward to the next edition of ETOP and hope to see you again in 2021.

Anne-Sophie Poulin-Girard
Joseph A. Shaw