Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

3D DISPLAY TECHNIQUES AND TECHNOLOGIES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11062.03</td>
<td>Large-scale full-color computer-generated display holograms created by stacking transferred volume holograms [11062-2]</td>
</tr>
<tr>
<td>11062.04</td>
<td>Exact mask-based occlusion processing in large-scale computer holography for 3D display [11062-3]</td>
</tr>
<tr>
<td>11062.06</td>
<td>Design of free-form surface backlight unit for displays [11062-5]</td>
</tr>
</tbody>
</table>

SWITCHABLE, TUNABLE AND RECONFIGURABLE OPTICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11062.0A</td>
<td>1x4 VLC wavelength demultiplexer based on multislot waveguide structures [11062-9]</td>
</tr>
</tbody>
</table>

NOVEL OPTICS FOR AUGMENTED, MIXED AND VIRTUAL REALITY SYSTEMS (AR, MR, VR)

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11062.0D</td>
<td>NewSight Reality Inc. (NSR) novel transparent optical module for augmented reality eyewear (Invited Paper) [11062-11]</td>
</tr>
<tr>
<td>11062.0E</td>
<td>A novel approach to freeform optimization: designing an eye-tracking augmented reality system using grid-based sag optimization [11062-12]</td>
</tr>
<tr>
<td>11062.0F</td>
<td>A compact red-green-blue superluminescent diode module: A novel light source for AR microdisplays [11062-13]</td>
</tr>
</tbody>
</table>

WAVEGUIDE OPTICS FOR AR/MR SYSTEMS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11062.0H</td>
<td>Optical design of a thin curved lightguide and manufacturing using ophthalmic approaches (Invited Paper) [11062-15]</td>
</tr>
<tr>
<td>11062.0J</td>
<td>Optical waveguide combiners for AR headsets: features and limitations [11062-17]</td>
</tr>
<tr>
<td>11062.0M</td>
<td>Waveguide optics enabled consumer HUDs revolutionizing AR transportation applications [11062-72]</td>
</tr>
</tbody>
</table>
3D imaging systems based on projectors and mobile phones [11062-20]

PixMap: automatic license plate recognition with convolutional neural network based on saliency maps [11062-21]

Holistic optimization of optical systems [11062-22]

Research on influences of atmospheric turbulence on long-distance Fourier ptychographic imaging [11062-23]

Accommodation corrected 3D displays using spatial volume demultiplexer chip [11062-27]

Evaluation of augmented reality (AR) displays performance based on human visual perception [11062-29]

Analysis of the visual perception conflicts in the mixed reality systems with the real-world illumination parameters restoration [11062-30]

Enhanced field-of-view structured illumination projector using stacked microlens arrays [11062-31]

Inspection of surface imperfections via height contrast imaging based on angle selective illumination [11062-32]

Ultra-precision angle measurement sensors with optimized size, weight and power [11062-33]

Dot pattern generation using thick sinusoidal phase grating under Gaussian beam illumination [11062-34]

Single exposure lensless subpixel phase imaging [11062-35]

Optical quality metrics for image restoration [11062-37]
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11062 17</td>
<td>A plug-n-play framework and acquisition methodology for remote exploration systems with single pixel cameras [11062-41]</td>
</tr>
<tr>
<td>11062 1D</td>
<td>Spatially-varying blur kernel measurement based on discrete cosine transform single-pixel imaging [11062-47]</td>
</tr>
<tr>
<td>11062 1E</td>
<td>Refractive telescope design with digital correction of residual chromatic aberrations [11062-48]</td>
</tr>
<tr>
<td>11062 1F</td>
<td>Design and research of lenses with a remote pupil and a telecentric beam path [11062-49]</td>
</tr>
<tr>
<td>11062 1I</td>
<td>Automated fine-focusing in digital microscopy [11062-52]</td>
</tr>
<tr>
<td>11062 1N</td>
<td>Segmentation of illuminated areas of light using fully-convolutional neural networks and computer vision algorithms for augmented reality systems [11062-57]</td>
</tr>
<tr>
<td>11062 1O</td>
<td>Digital methods of impact on the image [11062-58]</td>
</tr>
<tr>
<td>11062 1P</td>
<td>Simultaneous quantification of biomarkers using wax-patterned paper-polymer centrifugal optics [11062-59]</td>
</tr>
<tr>
<td>11062 1Q</td>
<td>Colorimetric detection of acetylcholinesterase using paper hybrid centrifugal fluidic on disc platform [11062-60]</td>
</tr>
<tr>
<td>11062 1U</td>
<td>Review and analysis of optics for road lighting [11062-64]</td>
</tr>
<tr>
<td>11062 1V</td>
<td>Design and aberration analysis of several AR optical architectures working with different sources of image [11062-65]</td>
</tr>
<tr>
<td>11062 1X</td>
<td>Achromatic image rotator [11062-67]</td>
</tr>
<tr>
<td>11062 1Y</td>
<td>The efficient method of mixed reality light restoration using HDR image of 3D scene [11062-68]</td>
</tr>
<tr>
<td>11062 20</td>
<td>An extrapolation-based method for improving the accuracy of phase retrieval with the transport of intensity equation [11062-70]</td>
</tr>
</tbody>
</table>
PLENARY SESSION

11062 22 Digital optical elements and technologies (EDO19): applications to AR/VR/MR (Plenary Paper)

[11062-76]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Andreev, Lev, 1F
Bhattacharjee, Profilm, 17
Blum, Ron, 0D
Bogdanov, Nikolay N., 0W, 1N, 1Y
Börner, Anko, 17
Braun, Alexander, 14
Cakmakci, Ozan, 0H
Carolla, Jerry, 0H
Castiglia, A., 0F
Chukhlmov, Anton, 10
Claytor, Nelson E., 10
Dahdah, J., 0F
Dannberg, Peter, 0Y
de Cursel, Sébastien, 0V
dercher, Zachary, 0E
Dowd, Edward Jr., 10
Duell, M., 0F
Egliazarian, Karen, 12
El Khatib, Yassin, 00
Ezhova, Kseniia, 10
Ezhova, Vasilia, 1F
Fan, Chen, 20
Fan, Xuewu, 0Q
Fischer, Stephanie, 0Y
Fu, Qiang, 1E
Gay, Shawn, 0E
Gertners, U., 01
Gindl, Monel, 0A
Globo, S., 0F
Grant, Alastair J., 0M
Gupta, Amitava, 0D
Hasnat, Abul, 00
Hemery, Alice, 00
Herkommer, Alois, 0P
Ikonnikov, Alexey, 1F
Jiang, Hongzhl, 1D
Johnson, Gregory, 10
Kafkivnik, Vladimir, 12
Khata, Maruan, 00
Khamov, M. N., 0N
Kim, Danil, 1P, 1Q
Kim, Songhyo, 1P, 1Q
Kim, Sejin, 1P, 1Q
Knecht, C., 0Z
Kocsis, Péter, 12
Koneva, Tatiana A., 1V
Kress, Bernard C., 0J, 22
Kundu, Rohan, 0Y
Kunieda, Onle, 03

...continued on the next page...
Conference Committee

Symposium Chairs

Bernard C. Kress, Microsoft Corporation (United States)
Peter Schelkens, Vrije Universiteit Brussel (Belgium)

Conference Chairs

Bernard C. Kress, Microsoft Corporation (United States)
Peter Schelkens, Vrije Universiteit Brussel (Belgium)

Conference Programme Committee

Tibor Balogh, Holografika Kft. (Hungary)
Partha P. Banerjee, University of Dayton (United States)
Christian Bosshard, Centre Suisse d'Electronique et de Microtechnique SA (Switzerland)
Arie den Boef, ASML Netherlands B.V. (Netherlands)
Federico Capasso, Harvard School of Engineering and Applied Sciences (United States)
Oliver Cossairt, Northwestern University (United States)
Andreas Hammerschmidt, HOLOEYE Photonics AG (Germany)
Yoshio Hayasaki, Utsunomiya University (Japan)
Hans Peter Herzig, École Polytechnique Fédérale de Lausanne (Switzerland)
Hong Hua, James C. Wyant College of Optical Sciences (United States)
Fu-Chung Huang, nVIDIA Corporation (United States)
Bahram Javidi, University of Connecticut (United States)
Sabina Jeschke, Rheinisch-Westfälische Technische Hochschule Aachen (Germany)
Norbert Kerwien, Carl Zeiss AG (Germany)
Joel S. Kollin, Microsoft Corporation (United States)
Byoungho Lee, Seoul National University (Korea, Republic of)
Scott Mc Eldowney, Facebook/Oculus VR, LLC (United States)
Juan C. Minano, Limbak 4PI S.L. (Spain)
Ilmars Osmanis, Lightspace Technologies, SIA (Latvia)
Silvana F. Pereira, Technische Universiteit Delft (Netherlands)
Christophe Peroz, Magic Leap, Inc. (United States)
Pascal Picart, Université du Maine (France)
Ting-Chung Poon, Virginia Polytechnic Institute and State University (United States)
Demetri Psaltis, École Polytechnique Fédérale de Lausanne (Switzerland)
Monika Ritsch-Marte, Medizinische Universität Innsbruck (Austria)
Robert E. Stevens, Adlens Ltd. (United Kingdom)
Hagen Stolle, SeeReal Technologies GmbH (Germany)
Adrian Travis, Microsoft Research (France)
Reinhard Voelkel, SUSS MicroOptics SA (Switzerland)
Angus Wu, Huawei Technologies Co., Ltd. (United States)
Frank Wyrowski, LightTrans International UG (Germany)

Session Chairs
1 3D Display Techniques and Technologies
Bernard C. Kress, Microsoft Corporation (United States)
2 Switchable, Tunable and Reconfigurable Optics
Svetlana Samoilova, NewSight Reality (United States)
3 Novel Optics for Augmented, Mixed and Virtual Reality Systems (AR, MR, VR)
Christian Hellmann, Wyrowski Photonics UG (Germany)
4 Waveguide Optics for AR/MR Systems
Sébastien de Cunsel, WaveOptics, Ltd. (United Kingdom)
5 Digital Optics for Image Formation
Aleksandra M. Pedraszewska, VividQ (United Kingdom)
6 Increasing Visual Comfort in 3D Displays
Bernard C. Kress, Microsoft Corporation (United States)
7 Digital Optics for Display and Sensing
Thomas Milde, Carl Zeiss AG (Germany)
8 Computation Display and Imaging I
Peter Schelkens, Vrije Universiteit Brussel (Belgium)
9 Computation Display and Imaging II
Ishan Chatterjee, Microsoft Corporation (United States)
10 Computation Display and Imaging III
Bernard C. Kress, Microsoft Corporation (United States)