Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference Committee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOVEL LIGHT SOURCES AND THEIR APPLICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11228 0D</td>
<td>Master-slave principle applied to an electrically-tunable swept source-OCT system</td>
<td>11228-12</td>
</tr>
<tr>
<td>BRAIN AND NEURAL IMAGING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11228 0Q</td>
<td>Quantifying changes in murine fetal brain vasculature due to prenatal exposure to teratogens with in utero optical coherence tomography</td>
<td>11228-25</td>
</tr>
<tr>
<td>11228 0S</td>
<td>In vivo imaging of human peripheral nerves using optical coherence tomography compared to histopathology slices</td>
<td>11228-91</td>
</tr>
<tr>
<td>AO AND MICROSCOPIIC OCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11228 0X</td>
<td>In vivo Mirau-type optical coherence microscopy with symmetrical illumination</td>
<td>11228-32</td>
</tr>
<tr>
<td>CLINICAL APPLICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11228 15</td>
<td>Optical coherence tomography for complex diagnosis of vulvar diseases</td>
<td>11228-40</td>
</tr>
<tr>
<td>OCT NEW TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11228 16</td>
<td>Switchable vertical/horizontal section imaging with line-field confocal optical coherence tomography</td>
<td>11228-41</td>
</tr>
<tr>
<td>11228 19</td>
<td>From master-slave to down-conversion optical coherence tomography</td>
<td>11228-44</td>
</tr>
<tr>
<td>SIGNAL/IMAGE PROCESSING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11228 1G</td>
<td>Virtual multi-directional optical coherence tomography</td>
<td>11228-51</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>1H</td>
<td>Achieving the ideal point spread in swept source OCT</td>
<td>11228-52</td>
</tr>
<tr>
<td>1Q</td>
<td>Multifrequency-swept optical coherence microscopy for full-field in-vivo intracochlear vibration measurement</td>
<td>11228-61</td>
</tr>
<tr>
<td>20</td>
<td>Comparison of classification methods of Barret's and dysplasia in the esophagus from in vivo optical coherence tomography images</td>
<td>11228-71</td>
</tr>
<tr>
<td>26</td>
<td>A spectral de-mixing model for triplex in vivo imaging of optical coherence tomography contrast agents</td>
<td>11228-77</td>
</tr>
<tr>
<td>2C</td>
<td>Quantification of ex vivo tissue activity by short and long time-course analysis of multifunctional OCT signals</td>
<td>11228-83</td>
</tr>
<tr>
<td>2F</td>
<td>Multimodal optical coherence tomography for quantitative diagnosis of breast cancer subtypes</td>
<td>11228-86</td>
</tr>
<tr>
<td>2L</td>
<td>840-nm broadband SLED-SOA MOPA source integrated in 14-pin butterfly module with 100+ mW free-space output power</td>
<td>11228-93</td>
</tr>
<tr>
<td>2M</td>
<td>Application of over-sampling nano-sensitive optical coherence tomography for monitoring corneal internal structural changes in corneal cross-linking</td>
<td>11228-94</td>
</tr>
<tr>
<td>2N</td>
<td>Combined-SLED source for UHR-OCT and SLO integrated in 14-pin butterfly module</td>
<td>11228-95</td>
</tr>
<tr>
<td>2O</td>
<td>Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis</td>
<td>11228-96</td>
</tr>
<tr>
<td>2P</td>
<td>Achromatic phase-shifting method for isolated tissue imaging with video-rate FF-OCT</td>
<td>11228-97</td>
</tr>
<tr>
<td>2T</td>
<td>Superluminescent diodes of spectral range 730 – 790 nm based on strained SQW heterostructure</td>
<td>11228-102</td>
</tr>
<tr>
<td>2U</td>
<td>High power low coherent light sources based on superluminescent diodes</td>
<td>11228-103</td>
</tr>
<tr>
<td>11228 2V</td>
<td>Numerical method for axial motion correction in optical coherence tomography [11228-104]</td>
<td></td>
</tr>
<tr>
<td>11228 2Z</td>
<td>Transparent media thickness measurement employing low-coherence interferometry and a multi-element array [11228-108]</td>
<td></td>
</tr>
<tr>
<td>11228 30</td>
<td>Development of HR-SD-OCT system using supercontinuum light source and its application in detecting nanoscale changes [11228-109]</td>
<td></td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abd El-Sadek, I. G., 2C
Alexandrov, Sergey, 2M, 30
Ambekar, Yogeshwari, 0Q
Andreev, A. Yu., 2T
Anikeev, Andrey S., 2T, 2U
Arain, Muzammil A., 1H
Atla, Walid, 1H
Azizmani, Hicham, 16
Bonsanto, M. M., 2O
Bradu, Adrian, 0D, 19
Brenke, C., 0S
Brinkmann, R., 2O
Bustamante, Noemi, 0Q
Carolus, A. E., 0S
Cernat, Ramona, 0D, 19
Chamorovskiy, Alexander, 2T, 2U
Chen, Jianjian, 2P
Choi, Samuel, 1Q
Choi, Yujin, 2O
Dahdah, J., 2L, 2N
de la Zerda, Adam, 26
Dey, Rajib, 2M, 30
Draeger, W., 2O
Dubois, Arnaud, 16
Dueik, M., 2L, 2N
Ensher, Jason, 0D
Ford, Tim N., 1H
Fukuda, S., 2C
Gao, Wanrong, 2P
Gelikonov, Grigory V., 15, 2F, 2V
Gelikonov, V. M., 2V
Gerhardt, N. C., 0S
Gladkov, Natalia D., 15, 2F
Gloor, S., 2L, 2N
Grill, C., 2O
Gubarkova, Ekaterina V., 2F
Hagel, C., 2O
Hibino, Hiroshi, 1Q
Ho, Tuan-Shu, 0X
Holmann, M. R., 0S
Huber, R., 2O
Ilchenko, Stepan N., 2T, 2U
Jabbour, Joey, 1H
Johnson, Bart, 1H
Kano, H., 2C
Karashin, Dmitry A., 15
Kemp, Nate, 1H
Konovalova, Elizaveta A., 15
Kouka, Amur, 0Q
Kropáč, Vlastimil, 2Z
Ksenofontov, S. Yu., 2V
Kuznetsov, Sergey S., 2F
Kuznetsova, Irina A., 15
Ladugin, M. A., 2T
Lange, B., 2O
Larin, Kirill V., 0Q
Leahy, Martin, 2M, 30
Lenz, M., 0S
Levecq, Olivier, 16
Liu, Chih-Hao, 0Q
Lu, Chih-Wei, 0X
Makita, Shuichi, 1G, 2C
Marmalyuk, A., 2T
Marques, Manuel Jorge M., 0D, 19, 2Z
Matussaka, S., 2C
Matuschek, N., 2L
Matveev, Lev A., 15, 2F
Matveev, Alexander L., 2F
Miranda, Rajesh C., 0Q
Miyazawa, A., 2C
Moiseev, Alexander A., 15, 2F, 2V
Möller, J., 0S
Mukherjee, P., 2C
Neuhaus, Kai, 2M, 30
Nin, Fumiaki, 1Q
Nolan, Andrew, 2M, 30
Ogien, Jonas, 16
Oida, Daisuke, 1G
Oikawa, Kensuke, 1G
Ojeda, J., 2L, 2N
Oka, Y., 2C
Oshika, T., 2C
Ota, Takeru, 1Q
Paddlitsa, A. A., 2T
Pankratov, K. M., 2T
Pholliou, Christos, 20
Pitris, Costas, 20
Plastiras, George, 20
Podoleanu, Adrian, 0D, 19, 2Z
Potapov, Arseniy L., 15
Primerov, N., 2N
Radenska-Lopovok, Stefan G., 15
Raghunathan, Raksha, 0Q
Rezzonico, R., 2L
Safonov, Ivan K., 15
Schmiedler, K., 0S
Schmoll, Tilman, 1H
Shen, L. T. W., 2C

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Shevidi, Saba, 26
Shidlovski, Vladimir R., 2T, 2U
Shilyagin, P. A., 2V
Si, Peng, 26
Singh, Manmohan, 0Q
Sirotkina, Marina A., 15, 2F
Sovetsky, Alexander A., 2F
Strenge, P., 2O
Tearney, Guillermo, 20
Terpelov, D. A., 2V
Timakova, Anna A., 15
Tsai, Meng-Tsan, 1G
Tsai, Ming-Rung, 0X
Vagapova, Nailya N., 15
van de Nes, J. A. P., 0S
Velez, C., 2L, 2N
Vorontsov, Alexey Yu., 2F
Vorontsov, Dmitriy A., 2F
Wang, Tai-Ang, 1G
Welp, H., 0S
Whitney, Peter, 1H
Williams, Rick, 1H
Woo, Seungbum, 1H
Yakubovich, Sergei D., 2T, 2U
Yamashita, T., 2C
Yan, Connie, 0Q
Yarotskaya, I. V., 2T
Yasuno, Yoshiaki, 1G, 2C
Yuan, Edwin, 26
Zagaynova, Elena V., 15, 2F
Zaitsev, Vladimir Y., 2F
Zhou, Yi, 2M, 30
Zhu, Yue, 2P
Conference Committee

Symposium Chairs

Jennifer K. Barton, The University of Arizona (United States)
Wolfgang Drexler, Medizinische Universität Wien (Austria)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

Joseph A. Izatt, Duke University (United States)
James G. Fujimoto, Massachusetts Institute of Technology (United States)

Conference Program Committee

Peter E. Andersen, Technical University of Denmark (Denmark)
Kostadinka Bizheva, University of Waterloo (Canada)
Stephen A. Boppart, University of Illinois at Urbana-Champaign (United States)
Zhongping Chen, Beckman Laser Institute and Medical Clinic (United States)
Johannes de Boer, Vrije Universiteit Amsterdam (Netherlands)
Wolfgang Drexler, Medizinische Universität Wien (Austria)
Grigory V. Gelikonov, Institute of Applied Physics (Russian Federation)
Christoph K. Hitzenberger, Medizinische Universität Wien (Austria)
Robert A. Huber, Universität zu Lübeck (Germany)
Rainer A. Leitgeb, Medizinische Universität Wien (Austria)
Xingde Li, Johns Hopkins University (United States)
Yingtian Pan, Stony Brook University (United States)
Adrian Gh. Podoleanu, University of Kent (United Kingdom)
Andrew M. Rollins, Case Western Reserve University (United States)
Marinko V. Sarunic, Simon Fraser University (Canada)
Guillermo J. Tearney, Wellman Center for Photomedicine (United States)
Valery V. Tuchin, Saratov State University (Russian Federation) and Tomsk State University (Russian Federation) and Institute of Precision Mechanics and Control of the RAS (Russian Federation)
Ruikang K. Wang, University of Washington (United States)
Maciej Wojtkowski, Nicolaus Copernicus University (Poland)
Yoshiaki Yasuno, University of Tsukuba (Japan)

Session Chairs

1 OCT Angiography
 Joseph A. Izatt, Duke University (United States)

2 Novel Light Sources and Their Applications
 James G. Fujimoto, Massachusetts Institute of Technology
 (United States)

3 Ophthalmic New Technology
 Ruikang K. Wang, University of Washington (United States)

4 Brain and Neural Imaging
 Maciej Wojtkowski, Polish Academy of Sciences (Poland)

5 AO and Microscopic OCT
 Christoph K. F. Hitzenberger, Medizinische Universität Wien (Austria)

6 Clinical Applications
 Kostadinka Bizheva, University of Waterloo (Canada)

7 OCT New Technology
 Johannes F. de Boer, Vrije Universiteit Amsterdam (Netherlands)

8 Signal/Image Processing
 Andrew M. Rollins, Case Western Reserve University (United States)

9 Full Field OCT
 Zhongping Chen, Beckman Laser Institute and Medical Clinic
 (United States)

10 Small Animal/Preclinical
 Rainer A. Leitgeb, Medizinische Universität Wien (Austria)

11 Machine Learning
 Marinko V. Sarunic, Simon Fraser University (Canada)

12 Novel Contrast Mechanisms
 Peter E. Andersen, DTU Fotonik (Denmark)