Contents

SESSION 1 LASERS, LASER SYSTEMS

<table>
<thead>
<tr>
<th>CID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>661002</td>
<td>The time and spatial dynamics of the YAG:Nd³⁺/YAG:Cr⁴⁺ microchip laser emission</td>
<td>A. G. Okhrimchuk, A. V. Shestakov, Elements of Laser Systems Co. (Russia)</td>
</tr>
<tr>
<td>661006</td>
<td>Hybrid ytterbium doped active medium for femtosecond lasers</td>
<td>E. V. Pestryakov, V. V. Petrov, V. I. Trunov, A. V. Kirpichnikov, A. V. Laptev, M. A. Merziakov, S. N. Bagayev, Institute of Laser Physics (Russia); V. N. Matrosov, Belarusian Technical Univ. (Belarus)</td>
</tr>
<tr>
<td>661007</td>
<td>Some particularities to generations of solid state laser with nonlinear transparency absorber</td>
<td>A. S. Kuchyanov, The Institute of Automation and Electrometry (Russia)</td>
</tr>
</tbody>
</table>

Pagination: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon they are published online, and connects the same identifier to all online, print, and electronic versions of the publication.

SPIE uses a six-digit CID article numbering system in which:
- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, .., 0Z, followed by 10-1Z, 20-2Z, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
SESSION 2 LASER PARTS AND COMPONENTS

661008 2.94 µm Er:YAG Q-switched laser with Fe²⁺:ZnSe passive shutter [6610-07]
V. A. Akimov, Moscow Institute of Physics and Technology (Russia); M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, Lebedev Physical Institute (Russia); V. G. Polushkin, Institute of Nuclear Research (Russia); A. A. Voronov, Moscow Institute of Physics and Technology (Russia)

661009 Room-temperature operation of a Fe²⁺:ZnSe laser [6610-08]
V. A. Akimov, Moscow Institute of Physics and Technology (Russia); M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, Lebedev Physical Institute (Russia); A. A. Voronov, Moscow Institute of Physics and Technology (Russia)

66100A Combined CW ring single-frequency Ti:sapphire/dye laser for atom cooling and high-precision spectroscopy [6610-09]
S. Kobtsev, Novosibirsk State Univ. (Russia) and Tekhoscan Joint-Stock Co. (Russia); V. Baraulya, V. Lunin, Teknoscan Joint-Stock Co. (Russia)

66100B Multifunctional lidar for needs of oil-and-gas pipes [6610-10]
S. V. Alimov, Tumentransgas, Ltd. (Russia); S. V. Kascheev, Vavilov State Optical Institute (Russia); D. V. Kosachev, Tumentransgas, Ltd. (Russia); S. B. Petrov, A. P. Zhevlakov, Vavilov State Optical Institute (Russia)

66100C Yb-doped fiber laser with tunable FBG [6610-11]
V. A. Akulov, D. M. Afanasiev, S. A. Babin, S. I. Kablukov, Institute of Automation and Electrometry (Russia); M. A. Rybakov, Inversion Fiber Co., Ltd. (Russia); A. A. Vlasov, Institute of Automation and Electrometry (Russia)

66100D 30W Yb³⁺ pulsed fiber laser with wavelength tuning and its second harmonic generation [6610-12]
A. A. Krylov, Fiber Optic Research Ctr. (Russia)

66100E Stochastic model of polarization-dependent gain and gain fluctuations in fiber Raman amplifier with randomly varying birefringence [6610-13]
S. Sergeyev, Waterford Institute of Technology (Ireland); S. Popov, A. T. Friberg, Royal Institute of Technology (Sweden)

66100F Drastic reduction of heat release in magneto-optical elements: new ways toward a 100 kW average power Faraday isolator [6610-14]

66100G Experimental study of Faraday isolator for kilowatt-level average powers [6610-15]

66100H Spatial filters for multistage laser amplifiers [6610-16]
A. K. Poteomkin, T. Barmashova, A. V. Kirsanov, M. A. Martyanov, E. A. Khazanov, A. A. Shaykin, Institute of Applied Physics (Russia)
SESSION 3 LASER MATERIALS

66100I Fluoride-single crystals for lasers of VUV and UV regions of spectrum [6610-17]
V. V. Apollonov, A.M. Prochorov General Physics Institute (Russia); S. P. Chernov, Moscow State Univ. (Russia); T. V. Ouvrava, A.M. Prochorov General Physics Institute (Russia)

66100J The study of processes of nonradiative energy transfer between ions Yb3+ and Tm3+ in aluminosilicate fibers [6610-18]
A. N. Abramov, Mordovia State Univ. (Russia); A. N. Guryanov, Institute of Chemistry of High-Purity Substances (Russia); E. M. Dianov, A. S. Kurkov, Fiber Research Ctr. (Russia); K. N. Nishchek, P. A. Ryabochkina, Mordovia State Univ. (Russia); M. V. Jashkov, Institute of Chemistry of High-Purity Substances (Russia)

66100K Up-conversion media on basis single crystals BaY2F8 for UV and VUV solid state lasers [6610-19]
A. A. Pushkar, T. V. Ouvrava, A.M. Prochorov General Physics Institute (Russia); V. N. Molchanov, A.V. Shubnikov Institute of Crystallography (Russia)

66100L Theoretical and experimental study of migration-assisted upconversion in high-concentration erbium doped silica fibers [6610-20]
S. Sergeyev, Waterford Institute of Technology (Ireland); D. Khoptyar, Eberhard Karls Univ. Tübingen (Germany)

66100M Spectroscopic investigation of sodium titanium orthophosphates wide band red luminescence [6610-21]
O. Chukova, S. Nedilko, R. Boiko, P. Nagorny, Kyiv National Taras Shevchenko Univ. (Ukraine)

66100N Thermally induced wavefront distortions in laser ceramics [6610-22]

66100O Resistance of KGSS 0180 neodymium glass to laser-induced damage under different irradiation conditions [6610-23]
V. S. Sirazetdinov, NIKI OEP (Russia); V. I. Arbuzov, NITIOM, S.I. Vavilov State Optical Institute (Russia); D. I. Dmitriev, NIKI OEP (Russia); K. V. Dukelsky, NITIOM, S.I. Vavilov State Optical Institute (Russia); I. V. Ivanova, NIKI OEP (Russia); S. G. Lunter, NITIOM, S.I. Vavilov State Optical Institute (Russia); V. N. Pasunkin, NIKI OEP (Russia); A. V. Savkin, RFNC VNIIIEF (Russia); A. V. Charukhchev, NIKI OEP (Russia); O. A. Sharov, RFNC VNIIIEF (Russia)

SESSION 4 NONLINEAR FREQUENCY CONVERSION

66100P Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO [6610-24]
S. Kobtsev, A. Zavyalov, Novosibirsk State Univ. (Russia)

66100Q Efficient resonant doubler of CW tunable single-frequency radiation with a 1-THz automatic quasi-smooth scan range [6610-25]
S. Kobtsev, Novosibirsk State Univ. (Russia) and Tekhnoscan Joint-Stock Co. (Russia); V. Baraulya, V. Lunin, Tekhnoscan Joint-Stock Co. (Russia)
<table>
<thead>
<tr>
<th>Papers</th>
<th>Titles</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>66100R</td>
<td>High effective SHG of femtosecond pulse with ring profile of beam in bulk medium with cubic nonlinear response</td>
<td>V. A. Trofimov, V. V. Trofimov, Lomonosov Moscow State Univ. (Russia)</td>
<td></td>
</tr>
<tr>
<td>66100S</td>
<td>Picosecond optical parametric oscillator synchronously intracavity pumped by mode-locked Nd:YVO₄ laser</td>
<td>A. Zavadilová, V. Kubeček, Czech Technical Univ. (Czech Republic); J.-C. Diels, Ctr. for High Technology Materials, Univ. of New Mexico (USA)</td>
<td></td>
</tr>
<tr>
<td>66100T</td>
<td>The spectrum of up-converted broadband radiation in nonlinear optical crystals</td>
<td>V. V. Krishtop, V. G. Efremenko, M. N. Litvinova, A. V. Syuy, V. I. Stroganov, E. V. Tolstov, Far Eastern State Transport Univ. (Russia)</td>
<td></td>
</tr>
<tr>
<td>66100U</td>
<td>Particularity of optical features of nonlinear barium sodium noibate</td>
<td>S. V. Ivanova, P.N. Lebedev Physical Institute (Russia)</td>
<td></td>
</tr>
<tr>
<td>66100V</td>
<td>Observation of spontaneously grown domain structure in SBO crystals via nonlinear diffraction</td>
<td>A. S. Aleksandrovsky, A. I. Zaitsev, A. V. Zamkov, L.V. Kirensky Institute of Physics (Russia)</td>
<td></td>
</tr>
<tr>
<td>66100W</td>
<td>Classification of noncentrosymmetric oxides with RE³⁺ ions applicable for self frequency doubling (SFD) laser crystals</td>
<td>V. V. Atuchin, B. I. Kidyarov, Institute of Semiconductor Physics (Russia); N. L. Tsirkina, Tecrys, Ltd. (Russia)</td>
<td></td>
</tr>
<tr>
<td>66100X</td>
<td>Self pulsing due to backward second-harmonic generation in engineered PPLN: the role of the induced cubic nonlinearity</td>
<td>M. Conforti, A. Locatelli, C, De Angelis, Univ. di Brescia (Italy); A. Parini, M. Lauritano, G. Bellanca, S. Trillo, Univ. di Ferrara (Italy)</td>
<td></td>
</tr>
</tbody>
</table>

Author Index
Symposium Committees

Conference Honorary Chairs

Zhores I. Alferov, Ioffe Physical-Technical Institute (Russia)
Charles H. Townes, University of California (USA)

Conference Chair

A. A. Mak, Institute for Laser Physics, Vavilov State Optical Institute (Russia)

Advisory Committee

Zhores I. Alferov, Ioffe Physical-Technical Institute (Russia)
P. A. Apanasevich, Stepanov Institute of Physics (Belarus)
V. I. Bespalov, Institute of Applied Physics (Russia)
D. Bimberg, Technical University Berlin (Germany)
W. Bohn, Institute of Technical Physics, German Aerospace Center (Germany)
Yu. N. Denisyuk, Ioffe Physical-Technical Institute (Russia)
T. Fujioka, Tokai University (Japan)
G. Hager, Air Force Research Laboratory (USA)
D. Hall, Edinburgh University (Great Britain)
G. Huber, University of Hamburg (Germany)
Yu. Kivshar, Australian National University (Australia)
P. Mandel, Université Libre de Bruxelles (Belgium)
E. Moses, Lawrence Livermore National Laboratory (USA)
C. R. Phipps, Photonics Associates (USA)
M. S. Soskin, Institute of Physics (Ukraine)
K.-I. Ueda, Institute of Laser Science (Japan)

Organizing Committee Chair

A. A. Mak, Institute for Laser Physics, Vavilov State Optical Institute (Russia)

Organizing Committee Vice-Chairs

O. D. Gavrilov, NP Laser Optics (Russia)
V. Yu. Venediktov, Institute for Laser Physics, Vavilov State Optical Institute (Russia)

Organizing Committee Members

E. I. Akopov, SPIE Russia Chapter (Russia)
V. M. Arpishkin, Rozhdestvensky Optical Society (Russia)
E. I. Makurov, Vavilov State Optical Institute (Russia)
A. D. Starikov, Institute for Complex Testing (Russia)
L. K. Sukhareva, Institute for Laser Physics, Vavilov State Optical Institute (Russia)
Yu. S. Tverjyanovich, St. Petersburg State University (Russia)
V. N. Vassil’yev, St. Petersburg State University of Information Technologies, Mechanics and Optics (Russia)

Program Committee Chair
A. A. Mak, Institute for Laser Physics, Vavilov State Optical Institute (Russia)

Program Committee Vice-Chairs
A. A. Andreev, Institute for Laser Physics, Vavilov State Optical Institute (Russia)
V. Yu. Venediktov, Institute for Laser Physics, Vavilov State Optical Institute (Russia)

Program Committee Secretary
A. A. Mirzaeva, Institute for Laser Physics, Vavilov State Optical Institute (Russia)

American Local Committee Chair
C. R. Phipps, Photonics Associates, (USA)

Asian Local Committee Chair
Ken-ichi Ueda, University of Electro-Communications (Japan)

European Local Committee Chair
W. Bohn, Institute of Technical Physics, German Aerospace Center (Germany)

Program Subcommittee Co chairs
G. Huber, University of Hamburg (Germany)
I. A. Shcherbakov, General Physics Institute (Russia)
I. T. Sorokina, Technical University of Vienna (Austria)

Program Subcommittee Members
G. Hollemann, Jenoptik (Germany)
V. A. Orlovich, Stepanov Institute of Physics (Belarus)
J.-P. Pocholle, Thales Research and Technology (France)
V. A. Serebryakov, Institute for Laser Physics, Vavilov State Optical Institute (Russia)
V. I. Ustyugov, Institute for Laser Physics, Vavilov State Optical Institute (Russia)
G. M. Zverev, Polyus Research and Development Institute (Russia)