Quantum Informatics 2007

Yuri I. Ozhigov
Editor

2–5 October 2007
Moscow, Russia

Sponsored by
NIX Computer Company (Russia)
Russian Fund for Fundamental Research (Russia)

Published by
SPIE
Contents

v Conference Committee

vii Introduction

7023 02 Quantum computation and hidden variables [7023-01]
V. V. Aristov, A. V. Nikulov, Institute of Microelectronics Technology (Russia)

7023 03 Quantum theory with hidden variables and dynamic chaos [7023-02]
Yu. I. Bogdanov, Institute of Physics and Technology (Russia)

7023 04 Quantum computations on ion traps [7023-03]
A. Burkov, Y. Ozhigov, Moscow State Univ. (Russia)

7023 05 Relative coordinates of coherent electron pair [7023-04]
C. V. Usenko, N. O. Cherkashyna, National Taras Shevchenko Univ. of Kyiv (Ukraine)

7023 06 Non-multiple non-equidimensional bases and unsharp measurements [7023-05]
D. V. Dodin, I. G. Kovalenko, Volgograd State Univ. (Russia)

7023 07 Probabilistic simulation of quantum states [7023-06]
Yu. P. Rybakov, Peoples' Friendship Univ. of Russia (Russia); T. F. Kamalov, Moscow State Open Univ. (Russia)

7023 08 Can the mathematical formalism of quantum mechanics be applied to psychology?
[7023-07]
A. Khrennikov, Univ. of Växjö (Sweden)

7023 09 Quantum averages from Gaussian random fields at the Planck length scale [7023-08]
A. Khrennikov, Univ. of Växjö (Sweden)

7023 08 An investigation of the antiferromagnet-based NMR quantum register in inhomogeneous magnetic field [7023-10]
A. A. Kokin, Institute of Physics and Technology (Russia); V. A. Kokin, Institute of Radioengineering and Electronics (Russia)

7023 0C Non-locality: Mystery or myth? [7023-11]
A. F. Kracklauer, Bauhaus Univ. (Germany)

7023 0D Hidden time interpretation of quantum mechanics and no-protocol argument [7023-12]
P. V. Kurakin, Moscow Institute of Physics and Technology (Russia)

7023 0E Thermal entanglement in a case of two spin temperatures [7023-13]
M. Kutcherov, Polytechnic Institute of Siberian Federal Univ. (Russia)
On degenerate bispinor states of the Dirac wave equation system for an electron in an 
electrostatic field [7023-14]
B. K. Novosadov, M.V. Lomonosov Moscow State Univ. (Russia)

Macroscopic wavefunction for ensemble of ultracold atoms trapped in optical labyrinth 
[7023-15]
A. Yu. Okulov, A.M. Prokhorov General Physics Institute (Russia)

Numerical method of entangled state selection in association of molecules [7023-16]
K. S. Arakelov, Yu. I. Ozhigov, Moscow State Univ. (Russia)

Influence of surrounding spin environment on two-spin system ESR spectra [7023-17]
S. N. Dobryakov, V. V. Privezentsiev, Institute of Physics and Technology (Russia)

Geometric information in eight dimensions vs. quantum information [7023-18]
V. I. Tarkhanov, St. Petersburg State Polytechnic Univ. (Russia); M. M. Nesterov, St. 
Petersburg Institute for Informatics and Automation (Russia)

Problem of detection of Rydberg atoms and quantum information processing [7023-19]
(Russia)

Application of superconducting quantum interferometer in quantum computer 
development [7023-20]
A. I. Golovashkin, A. L. Karuzskiy, Lebedev Physical Institute (Russia); A. A. Orlikovskiy, 
V. V. Privezentsiev, Institute of Physics and Technology (Russia); A. M. Tshovrebov, Lebedev 
Physical Institute (Russia)

Optically driven nanostructures as the basis for large-scale quantum computing [7023-21]
A. V. Tsukanov, Institute of Physics and Technology (Russia)

Selective control of states of a three-level quadrupolar nucleus using non-selective radio-
frequency pulses [7023-22]
V. E. Zobov, L.V. Kirensky Institute of Physics (Russia); V. P. Shauro, Siberian Federal Univ. 
(Russia)

Author Index
Conference Committee

Conference Chair

Yuri I. Ozhigov, Institute of Physics and Technology (Russia)

Program Committee

K. A. Valiev, Institute of Physics and Technology (Russia)
A. A. Orlikovski, Institute of Physics and Technology (Russia)
D. J. Wineland, National Institute of Standards and Technology (USA)
J. I. Cirac, Max-Planck Institute (Germany)
Y. I. Ozhigov, Moscow State University (Russia) and Institute of Physics and Technology (Russia)
Y. I. Bogdanov, Institute of Physics and Technology (Russia)
D. V. Averin, Stony Brook University (USA)
L. E. Fedichkin, Clarkson University (USA)
G. Neizvestny, Institute of Semiconductors Physics (Russia)
L. Vaidman, Tel-Aviv University (Israel)
A. M. Afanasyev, Institute of Physics and Technology (Russia)
V. Buzek, Institute of Physics (Slovakia)
S. N. Molotkov, Institute of Solid State Physics (Russia)
A. S. Holevo, Institute of Mathematics (Russia)
V. K. Levin, Academy of Cryptography (Russia)
K. M. Salikhov, Kazan State University (Russia)
A. V. Korolkov, Academy of Cryptography (Russia)
I. A. Semenihin, Institute of Physics and Technology (Russia)
A. V. Tsukanov, Institute of Physics and Technology (Russia)
Introduction

Quantum Informatics - 2007 (QI-2007) is the forth international symposium on quantum informatics held in Russia. The symposium was organized by the Faculty of Computational Mathematics and Cybernetics of Moscow State University and the Institute of Physics and Technology of Russian Academy of Sciences, and was sponsored by Russian Fund for Fundamental Research (RFFI, grants 07-01-06114-g, 06-01-00494-a), and NIX Computer Company (grant #F793/8-05).

QI-2007 demonstrated the substantial progress and new trends in quantum informatics that arose in the past two years. At first we saw the continuing development of quantum cryptography in Russia, which made it possible to characterize quantum informatics as a new perspective in IT technologies. The quantum channel, constructed by Sergei Molotkov (MSU, ISSP) began in Moscow. We expect further distribution of his scheme among the top level of business society and state organizations of Russia. Molotkov’s recent advantage is the establishing of the eavesdropping strategy, breaking quantum channel security with 11% noise. This strategy can be called the collective attack. It is characterized by the usage of quantum memory in eavesdropping. The former 11% border of admissible noise in quantum channel has been thus proved to be exact.

New investigations in quantum computer technology on solid state quantum dots have been represented by Alexander Tsukanov and Alexander Kokin (FTIAN). An ion trap quantum computer abstract model was investigated by Alexander Burkov (MSU), who applied the universal Akulin-Harel scheme to excited ions in Paul trap.

A significant part of QI-2007 was devoted to the critical analysis of the modern state of quantum theory, especially in the area of many particle ensembles. Andrei Khrennikov and Guillaume Adenier (Växjö University, Sweden) discussed fair sampling in EPR experiments that is the basis of quantum many-body theory. Detailed investigations of this kind of experiment are necessary because they reveal the stochastic character of quantum physics. It is also important to find new methods of representation of the quantum evolutions, more economical than the matrix algebra methods, because the latter require a huge amount of memory. Yuri Ozhigov (MSU, FTIAN) represented one of such methods: dynamical diffusion, which can serve as the satisfactory approximation for quantum unitary dynamics of the grain if spatial resolution is fixed. The concept of hidden time in quantum theory has been developed by Pavel Kurakin (MFTI). Al Kraklauer (USA) defended the positions of the so called local realism in quantum theory; his viewpoint represents the protest against the standard Hilbert formalism of tensor products that forms the base of the quantum theory of many bodies.

Indeed, Hilbert formalism leads us to and extremely large expenditure in time and memory if we try to simulate quantum evolution. But the excellent explanation of experimentally found entanglement makes us treat this formalism as the element that must be preserved in all possible reconsideration of the foundations of quantum theory.
The desirable reconsideration of the foundations of quantum theory could be heard in several papers presented at the QI-2007. My opinion is that the problem of quantum theory lies in its mathematical apparatus. It must be reorganized on the basis of algorithms instead of standard mathematics. An algorithmic approach in quantum physics is the best alternative to the standard formalism. This can be illustrated in the decoherence problem. The standard viewpoint treats decoherence as a kind of energy dissipation. The algorithmic treatment of decoherence represents it as the result of a severe limitation of classical memory in the simulation of quantum dynamics when the number of involved particles draws rapidly.

The very near future will show us the development of the ideas and methods represented at the QI-2007 symposium. Some video films from QI-2007 and books devoted to the algorithmic approach will soon become available at the site of the Quantum Informatics Chair in MSU: http://qi.cs.msu.su/