Front Matter: Volume 7112
Contents

<table>
<thead>
<tr>
<th>Conference Committee</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR NETWORKS</td>
<td></td>
</tr>
<tr>
<td>7112 03 A system architecture for filtering and disseminating data in sensors networks [7112-02]</td>
<td></td>
</tr>
<tr>
<td>Y. Alayev, A. Bar Noy, CUNY (United States); F. Chen, The Pennsylvania State Univ. (United States); I. Fermin, Sytems Engineering Associates (United Kingdom); T. Pham, Army Research Lab. (United States); G. Pearson, Defence Science and Technology Lab. (United Kingdom); T. F. La Porta, CUNY (United States)</td>
<td></td>
</tr>
<tr>
<td>7112 04 Using classification to improve wireless sensor network management with the continuous transferable belief model [7112-03]</td>
<td></td>
</tr>
<tr>
<td>M. Roberts, D. Marshall, Cardiff Univ. (United Kingdom)</td>
<td></td>
</tr>
<tr>
<td>7112 05 A knapsack approach to sensor-mission assignment with uncertain demands [7112-04]</td>
<td></td>
</tr>
<tr>
<td>D. Pizzocaro, Cardiff Univ. (United Kingdom); M. P. Johnson, CUNY (United States); H. Rowaihy, The Pennsylvania State Univ. (United States); S. Chalmers, Univ. of Aberdeen (United Kingdom); A. Preece, Cardiff Univ. (United Kingdom); A. Bar-Noy, CUNY (United States); T. La Porta, The Pennsylvania State Univ. (United States)</td>
<td></td>
</tr>
<tr>
<td>7112 06 TActical Sensor network TEst bed (TASTE) [7112-05]</td>
<td></td>
</tr>
<tr>
<td>ADVANCED FREE-SPACE OPTICAL COMMUNICATIONS TECHNIQUES AND APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>7112 07 UV solar-blind FSO sub-sea video communications: link budget study [7112-07]</td>
<td></td>
</tr>
<tr>
<td>S. Arnon, D. Kedar, Ben-Gurion Univ. of the Negev (Israel)</td>
<td></td>
</tr>
<tr>
<td>7112 08 A DC balancing algorithm for complex binary phase holograms [7112-08]</td>
<td></td>
</tr>
<tr>
<td>P. Vachiramon, G. E. Faulkner, D. C. O'Brien, Univ. of Oxford (United Kingdom)</td>
<td></td>
</tr>
<tr>
<td>7112 09 FSO tracking and auto-alignment transceiver system [7112-09]</td>
<td></td>
</tr>
<tr>
<td>G. A. Cap, H. H. Refai, J. J. Sluss, Jr., Univ. of Oklahoma (United States)</td>
<td></td>
</tr>
<tr>
<td>7112 08 Compact active high-resolution imaging system [7112-11]</td>
<td></td>
</tr>
<tr>
<td>I. Buske, W. Riede, Institute of Technical Physics (Germany)</td>
<td></td>
</tr>
<tr>
<td>ACTIVE AND PASSIVE IMAGERS, IMAGE SENSING, AND PROCESSING</td>
<td></td>
</tr>
<tr>
<td>7112 0F Building aerial mosaics for visual MTI [7112-17]</td>
<td></td>
</tr>
<tr>
<td>E. Turkbeyler, C. Harris, R. Evans, Roke Manor Research Ltd. (United Kingdom)</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>7112</td>
<td>Estimating dynamics of heavily fluctuating radar responses: a land clutter application and experimental results</td>
</tr>
<tr>
<td></td>
<td>SECURITY AND PERIMETER DETECTION</td>
</tr>
<tr>
<td>7112</td>
<td>Security applications of a remote electric-field sensor technology</td>
</tr>
<tr>
<td>7112</td>
<td>Aerial surveillance vehicles augment security at shipping ports</td>
</tr>
<tr>
<td>7112</td>
<td>Updates to SCORPION persistent surveillance system with universal gateway</td>
</tr>
<tr>
<td></td>
<td>UNATTENDED SENSOR TECHNOLOGIES</td>
</tr>
<tr>
<td>7112</td>
<td>Unattended ground sensors for monitoring national borders</td>
</tr>
<tr>
<td>7112</td>
<td>Compact integrated sensor processor: a common sensor processing core for the HYDRA unattended ground sensor system</td>
</tr>
<tr>
<td>7112</td>
<td>Sustainable unattended sensors for security and environmental monitoring</td>
</tr>
<tr>
<td>7112</td>
<td>Track-before-detect strategies for acoustic-seismic sensors</td>
</tr>
<tr>
<td>7112</td>
<td>Optical cell monitoring system for underwater targets (Invited Paper)</td>
</tr>
<tr>
<td>7112</td>
<td>High-resolution chemical sensor for unattended underwater networks</td>
</tr>
<tr>
<td>7112</td>
<td>RF power amplifier design for high-efficiency applications</td>
</tr>
</tbody>
</table>
SNIPER AND MORTAR FIRE

7112 0U Method of detection, classification, and identification of objects employing acoustic signal analysis [7112-32]
T. Orżanowski, H. Madura, T. Sosnowski, K. Chmielewski, Military Univ. of Technology (Poland)

7112 0V CCTV as an automated sensor for firearms detection: human-derived performance as a precursor to automatic recognition [7112-33]
I. T. Darker, A. G. Gale, A. Blechko, Loughborough Univ. (United Kingdom)

UNMANNED SYSTEM TECHNOLOGY I

7112 0W Improved cooperative planning for air vehicles searching for a ground object [7112-34]
G. V. Moon, QinetiQ Ltd. (United Kingdom)

7112 0X Remote control of mobile robots through human eye gaze: the design and evaluation of an interface [7112-35]
H. O. Latif, N. Sherkat, A. Lotfi, Nottingham Trent Univ. (United Kingdom)

7112 0Y Assessment of a visually guided autonomous exploration robot [7112-36]
C. Harris, R. Evans, E. Tidey, Roke Manor Research Ltd. (United Kingdom)

7112 0Z Fuzzy system reliability computation of the convoy of unmanned intelligent vehicles [7112-38]
H. Singh, A. M. Dixit, A. Mustapha, Wayne State Univ. (United States); G. R. Gerhart, U.S. Army Tank-Automotive Research, Development and Engineering Ctr. (United States)

UNMANNED SYSTEM TECHNOLOGY II

7112 11 Sensitivity analysis of an optimization-based trajectory planner for autonomous vehicles in urban environments [7112-40]
J. Hardy, M. Campbell, I. Miller, B. Schimpf, Cornell Univ. (United States)

7112 12 Design and development of a family of explosive ordnance disposal (EOD) robots [7112-41]

7112 13 On a new approach to reduction of data for ANFIS application to unmanned robotic vehicles [7112-42]
H. Singh, A. Mustapha, S. Kamthan, A. M. Dixit, Wayne State Univ. (United States); D. Nam, Wilberforce Univ. (United States); G. Witus, Turing Associates, Inc. (United States); G. R. Gerhart, U.S. Army Tank-Automotive Research, Development and Engineering Ctr. (United States)

7112 15 Optimizing sensor networks for autonomous unmanned ground vehicles [7112-44]
Y. Wang, D. P. Agrawal, Univ. of Cincinnati (United States)

Author Index
Conference Committee

Symposium Chair

David H. Titterton, Defence Science and Technology Laboratory (United Kingdom)

Conference Chair

Edward M. Carapezza, University of Connecticut and DARPA (United States)

Program Committee

James S. Albus, National Institute of Standards and Technology (United States)
Jacques Bédard, Defence R&D Canada, Valcartier (Canada)
Grant R. Gerhart, U.S. Army Tank-Automotive Research, Development and Engineering Center (United States)
Alan J. Gray, Defence Science and Technology Laboratory (United Kingdom)
Vincent A. Handerek, BAE Systems plc (United Kingdom)
Jeffrey R. Heberley, U.S. Army Armament Research, Development and Engineering Center (United States)
Todd M. Hintz, Space & Naval Warfare Systems Command SPAWARSYSCEN (United States)
Myron E. Hohil, U.S. Army Research, Development and Engineering Command (United States)
Ivan Kadar, Interlink Systems Sciences, Inc. (United States)
Leslie C. Laycock, BAE Systems plc (United Kingdom)
Tariq Manzur, Naval Undersea Warfare Center (United States)
Tien Pham, Army Research Laboratory (United States)
Nino Srour, Army Research Laboratory (United States)
Huub A. J. M. van Hoof, TNO (Netherlands)
Graeme P. van Voorthuijsen, TNO-FEL (Netherlands)

Session Chairs

1. Keynote Session
 Edward M. Carapezza, University of Connecticut and DARPA (United States)
 Todd M. Hintz, Space & Naval Warfare Systems Command SPAWARSYSCEN (United States)
2 Sensor Networks
Edward M. Carapezza, University of Connecticut and DARPA (United States)
Todd M. Hintz, Space & Naval Warfare Systems Command
SPAWARSYSCEN (United States)

3 Advanced Free-Space Optical Communications Techniques and Applications
Leslie C. Laycock, BAE Systems plc (United Kingdom)
Vincent A. Handerek, BAE Systems plc (United Kingdom)

4 Keynote Session
Todd M. Hintz, Space & Naval Warfare Systems Command
SPAWARSYSCEN (United States)
Edward M. Carapezza, University of Connecticut and DARPA (United States)

5 Active and Passive Imagers, Image Sensing, and Processing
Tariq Manzur, Naval Undersea Warfare Center (United States)
Edward M. Carapezza, University of Connecticut and DARPA (United States)

6 Security and Perimeter Detection
Todd M. Hintz, Space & Naval Warfare Systems Command
SPAWARSYSCEN (United States)
Alan J. Gray, Defence Science and Technology Laboratory (United Kingdom)

7 Unattended Sensor Technologies
Edward M. Carapezza, University of Connecticut and DARPA (United States)
Todd M. Hintz, Space & Naval Warfare Systems Command
SPAWARSYSCEN (United States)
Tariq Manzur, Naval Undersea Warfare Center (United States)
Alan J. Gray, Defence Science and Technology Laboratory (United Kingdom)
Graeme P. van Voorthuijsen, TNO-FEL (Netherlands)

8 Sniper and Mortar Fire
Tariq Manzur, Naval Undersea Warfare Center (United States)

9 Unmanned System Technology I
Grant R. Gerhart, U.S. Army Tank-Automotive Research, Development and Engineering Center (United States)
Todd M. Hintz, Space & Naval Warfare Systems Command
SPAWARSYSCEN (United States)
Unmanned System Technology II
Grant R. Gerhart, U.S. Army Tank-Automotive Research, Development and Engineering Center (United States)
Todd M. Hintz, Space & Naval Warfare Systems Command SPAWARSYSCEN (United States)
Introduction

The interest in unmanned and unattended sensor and sensor networks has continued to increase over the past several years. Related systems are being developed in support of military, homeland security, intelligence, law enforcement, physical security, and environmental monitoring applications around the world. Government agencies around the world are making significant investments to develop improved unattended and unmanned sensor systems and sensor networks. This SPIE conference series is devoted to papers on recent technological advancements in systems, technologies, and applications in this challenging area.

The conference included three keynote/invited presentations and 38 technical paper presentations organized into 10 sessions covering recent advances in sensor networks; advanced free-space optical communications, active and passive imagers, image sensing, and processing; security and perimeter detection; unattended sensor technologies; sniper and mortar fire; and unmanned system technology.

The following three keynote/invited talks were given and we sincerely thank all of these speakers for very stimulating and relevant presentations:

1. "Super hard problems in realizing MANETs," by Dr. John A. Parmentola (Office of the Secretary of the Army)

2. “Realistic acquisition and 3D display of human characters,” by Dr. Paul Debevec (University of Southern California)

3. “Science and technology roadmap for electro-optic and electronic warfare,” by Dr. Robert Winston (Naval Air Systems Command), presented by Dr. Tariq Mansur (Naval Undersea Warfare Center).

Thanks to those who prepared and presented the technical papers and for their contributions to a very successful meeting. The success of this conference is attributed to the participation of the commercial, university, and government research-and-development communities as well as the organizing efforts of the diverse and talented program committee.

Thanks to our program committee members for their dedication, time, and assistance in conference planning and organizing and especially to those members who were able to participate as session chairs including: Grant R. Gerhart (U.S. Army Tank Automotive Research Development and Engineering Center), Vincent A. Handerek (BAE Systems plc), Todd M. Hintz (Space and Naval
Warfare Systems Command), Leslie C. Laycock (BAE Systems plc), and Tariq Mansur (Naval Undersea Warfare Center).

Finally, an extra special thanks to all of the conference attendees this year for your interest and enthusiasm. The conference was well attended with a lot of interest in all the sessions. We hope the interest in this technology continues to grow, and that this conference will expand with even greater technical content and significance in future years.

Edward M. Carapezza