Contents

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SESSION 1 DISTRIBUTED SENSORS, RAMAN, AND BRILLOUIN SENSING</td>
<td></td>
</tr>
<tr>
<td>7316 02</td>
<td>Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection (Invited Paper) [7316-01]</td>
<td>M. Nikles, Omnisens S.A. (Switzerland)</td>
</tr>
<tr>
<td>7316 03</td>
<td>Feasibility study of the automated detection and localization of underground tunnel excavation using Brillouin optical time domain reflectometer [7316-02]</td>
<td>A. Klar, R. Linker, Technion-Israel Institute of Technology (Israel)</td>
</tr>
<tr>
<td>7316 04</td>
<td>Elimination of rain-induced nuisance alarms in distributed fiber optic perimeter intrusion detection systems [7316-03]</td>
<td>S. S. Mahmoud, J. Katsifolis, Future Fibre Technologies Pty Ltd. (Australia)</td>
</tr>
<tr>
<td>7316 05</td>
<td>Distributed temperature sensing via Brillouin-tailored optical fiber [7316-04]</td>
<td>P. D. Dragic, Neolight Technologies LLC (United States)</td>
</tr>
<tr>
<td>7316 06</td>
<td>Fiber optic distributed sensing applications in defense, security, and energy (Invited Paper) [7316-05]</td>
<td>M. Jaaskelainen, SensorTran, Inc. (United States)</td>
</tr>
<tr>
<td>7316 07</td>
<td>Tailoring of the Brillouin gain profile for fiber-based sensor systems and networks [7316-06]</td>
<td>P. D. Dragic, Neolight Technologies LLC (United States)</td>
</tr>
<tr>
<td>7316 08</td>
<td>Raman sensing of fuel gases using a reflective coating capillary optical fiber [7316-07]</td>
<td>M. P. Buric, K. Chen, J. Falk, National Energy Technology Lab. (United States) and Univ. of Pittsburgh (United States); R. Velez, National Energy Technology Lab. (United States) and Univ. of Massachusetts (United States); S. Woodruff, National Energy Technology Lab. (United States)</td>
</tr>
<tr>
<td></td>
<td>SESSION 2 FIBER GRATING SENSORS I</td>
<td></td>
</tr>
</tbody>
</table>
Radiation sensitivity of Bragg gratings written with femtosecond IR lasers [7316-11]
D. Grobnic, Communications Research Ctr. Canada (Canada); H. Henschel, S. K. Hoeffgen, J. Kuhnenn, Fraunhofer-INT (Germany); S. J. Mihailov, Communications Research Ctr. Canada (Canada); U. Weinand, Fraunhofer-INT (Germany)

Bragg gratings written in multimode borosilicate fibers using ultrafast infrared radiation and a phase mask [7316-12]
D. Grobnic, S. J. Mihailov, C. W. Smelser, Communications Research Ctr. Canada (Canada)

Embedded fiber optic Bragg grating (FBG) detonation velocity sensor [7316-13]
J. Benterou, C. V. Bennett, G. Cole, D. E. Hare, C. May, Lawrence Livermore National Lab. (United States); E. Udd, Columbia Gorge Research (United States); S. J. Mihailov, P. Lu, Communications Research Ctr. Canada (Canada)

Chemical sensor using Bragg-grating-based optical ridge waveguide with polydimethysiloxane as top layer [7316-15]
X. Dai, S. J. Mihailov, C. Blanchetiere, Communications Research Ctr. Canada (Canada)

High-sensitivity pressure sensor based on fiber Bragg grating and metal bellows [7316-16]
D. Song, J. Zou, Z. Wei, Stevens Institute of Technology (United States); S. Yang, Yantai Univ. (China); H.-L. Cui, Stevens Institute of Technology (United States)

Coupled resonator optical waveguide sensors: sensitivity and the role of slow light [7316-52]
M. A. Terrel, M. J. F. Digonnet, S. Fan, Stanford Univ. (United States)

High reliability FBG interrogation analyzers [7316-50]
W. Yang, C. Zhang, E. Bergles, BaySpec, Inc. (United States)

Fluoride glass fiber: state of the art (Invited Paper) [7316-49]
M. Saad, IRphotonics Inc. (Canada)

Advances in hyperspectral imaging technologies for multichannel fiber sensing [7316-20]
J. Zakrzewski, K. Didona, Headwall Photonics, Inc. (United States)

A model for an omnidirectional radiometer [7316-22]
M. E. Jansen, L. R. Gauthier, Jr., N. W. Rolander, The Johns Hopkins Univ. Applied Physics Lab. (United States)

A personal tour of the fiber optic Sagnac interferometer (Invited Paper) [7316-23]
E. Udd, Columbia Gorge Research (United States)

Swept laser interferometric interrogation [7316-24]
J. Bush, Optiphase, Inc. (United States)
Temperature-independent strain sensor based on a core-offset multimode fiber interferometer [7316-25]
B. Dong, Wilfrid Laurier Univ. (Canada); L. Wei, Wilfrid Laurier Univ. (Canada) and Univ. of Waterloo (Canada); D.-P. Zhou, W.-K. Liu, Univ. of Waterloo (Canada); J. W. Y. Lit, Wilfrid Laurier Univ. (Canada)

Low-cost lateral force sensor based on a core-offset multimode fiber interferometer with intensity-based interrogation technique [7316-26]
D.-P. Zhou, Univ. of Waterloo (Canada); B. Dong, Wilfrid Laurier Univ. (Canada); L. Wei, Wilfrid Laurier Univ. (Canada) and Univ. of Waterloo (Canada); W.-K. Liu, Univ. of Waterloo (Canada); J. W. Y. Lit, Wilfrid Laurier Univ. (Canada)

Low-noise planar external cavity laser for interferometric fiber optic sensors [7316-51]
M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, S. Li, Redfern Integrated Optics, Inc. (United States)

Sapphire direct bonding as a platform for pressure sensing at extreme high temperatures [7316-28]
E. M. Lally, Y. Xu, A. Wang, Virginia Polytechnic Institute and State Univ. (United States)

Reliability of optical fibers in a cryogenic environment [7316-29]
E. A. Lindholm, A. A. Stolov, R. S. Dyer, B. Slyman, D. Burgess, OFS Specialty Photonics Div. (United States)

G. Rajan, J. Mathew, Y. Semenova, G. Farrell, Dublin Institute of Technology (Ireland)

Light guide technology: using light to enhance safety [7316-32]
W. S. Lerner, Consultant (United States)

An integrated high-pressure, pressure temperature, and skin friction sensor [7316-33]
A. K. Sang, C. Boyd, Luna Innovations Inc. (United States)

Compact super-wideband optical antenna [7316-34]
W. C. Wang, R. Forber, IPITEK, Inc. (United States); K. Bui, U.S. Army Communications-Electronics Command (United States)

Ce-doped SiO2 optical fibers for remote radiation sensing and measurement [7316-36]
N. Chiudini, A. Vedda, M. Fasoli, F. Moretti, A. Lauria, Univ. degli Studi di Milano-Bicocca (Italy); M. C. Cantone, I. Veronese, Univ. degli Studi di Milano (Italy); G. Tosi, Istituto Europeo di Oncologia (Italy); M. Brambilla, B. Cannillo, E. Monesi, Azienda Ospedaliera Maggiore della Carità (Italy); G. Brambilla, M. Petrovich, Univ. of Southampton (United Kingdom)
Vulnerability of rare-earth-doped fibers for space missions: origins of radiation-induced attenuation [7316-37]
Y. Ouerdane, LAHC, Univ. Jean Monnet Saint-Etienne (France); S. Girard, CEA DAM Ile de France (France); B. Tortech, LAHC, Univ. Jean Monnet Saint-Etienne (France); T. Robin, iXFiber SAS (France); C. Marcandella, CEA DAM Ile de France (France); A. Boukenter, LAHC, Univ. Jean Monnet Saint-Etienne (France); B. Cadier, iXFiber SAS (France); J.-P. Meunier, LAHC, Univ. Jean Monnet Saint-Etienne (France); P. Crochet, iXFiber SAS (France)

Characterization of a triboluminescent optical sensor for detecting particles [7316-38]

SESSION 8 PHOTONIC CRYSTAL FIBERS AND SENSORS

Multi-channel surface-enhanced Raman scattering probe based on photonic crystal fiber [7316-39]
H. Yan, Z. Zhang, J. Liu, M. Li, S. Liao, C. Yang, Tsinghua Univ. (China); L. Hou, Yanshan Univ. (China)

High-sensitivity photonic crystal fiber interferometer for chemical vapors detection [7316-40]
J. Villatoro, M. P. Kreuzer, R. Jha, Institut de Ciències Fotòniques (Spain); V. P. Minkovich, Ctr. de Investigaciones en Óptica, A.C. (Mexico); V. Finazzi, G. Badenes, Institut de Ciències Fotòniques (Spain); V. Pruneri, Institut de Ciències Fotòniques (Spain) and Institució Catalana de Recerca i Estudis Avançats (Spain)

Photonic crystal fiber modal interferometers for accurate refractometry [7316-41]
J. Villatoro, R. Jha, G. Badenes, Institut de Ciències Fotòniques (Spain)

Design of photonic crystal fiber long-period grating refractive index sensor [7316-43]
J. Kanka, Institute of Photonics and Electronics (Czech Republic); Y. Zhu, Z. He, H. Du, Stevens Institute of Technology (United States)

Tunable properties of liquid crystal filled photonic crystal fibers [7316-44]
S. Mathews, Y. Semenova, G. Rajan, G. Farrell, Dublin Institute of Technology (Ireland)

POSTER SESSION

All-fiber multimode interference refractometer sensor [7316-47]
J. E. Antonio-Lopez, D. Lopez-Cortes, Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico); M. A. Basurto-Pensado, Univ. Autónoma del Estado de Morelos (Mexico); D. A. May-Arrioja, J. J. Sanchez-Mondragon, Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico)

Author Index
Conference Committee

Symposium Chair
Ray O. Johnson, Lockheed Martin Corporation (United States)

Symposium Cochair
Michael T. Eismann, Air Force Research Laboratory (United States)

Conference Chairs
Eric Udd, Columbia Gorge Research (United States)
Henry H. Du, Stevens Institute of Technology (United States)
Anbo Wang, Virginia Polytechnic Institute and State University (United States)

Program Committee
Christopher S. Baldwin, Aither Engineering, Inc. (United States)
Jeremy J. Baumberg, University of Cambridge (United Kingdom)
Jerry J. Benterou, Lawrence Livermore National Laboratory (United States)
Eric A. Bergles, BaySpec, Inc. (United States)
Jeff Bush, Optiphase, Inc. (United States)
Steven D. Christesen, U.S. Army Edgewood Chemical Biological Center (United States)
Brian Culshaw, University of Strathclyde (United Kingdom)
Robert P. Dahlgren, University of California, Santa Cruz (United States)
John P. Dakin, University of Southampton (United Kingdom)
Wolfgang Ecke, IPHT Jena (Germany)
Yoel Fink, Massachusetts Institute of Technology (United States)
Hiroshi Fudouzi, National Institute for Materials Science (Japan)
Tom W. Graver, Micron Optics, Inc. (United States)
Hajime Haneda, National Institute for Materials Science (Japan)
Kazuo Hotate, The University of Tokyo (Japan)
Jesper B. Jensen, Danmarks Tekniske Universitet (Denmark)
Desheng Jiang, Wuhan University of Technology (China)
Jiri Kanka, Institute of Photonics and Electronics (Czech Republic)
Steven T. Kreger, Luna Innovations Inc. (United States)
Paul Lefebvre, LxDATA (Canada)
Alexis Mendez, MCH Engineering LLC (United States)
Stephen J. Mihailov, Communications Research Center Canada (Canada)
Gary Pickrell, Virginia Polytechnic Institute and State University (United States)
Devanand K. Shenoy, Defense Advanced Research Projects Agency (United States)
Ping Shum, Nanyang Technological University (Singapore)
Svetlana A. Sukhishvili, Stevens Institute of Technology (United States)
Dennis J. Trevor, OFS Fitel, LLC (United States)
Michael J. Wardlaw, Naval Surface Warfare Center (United States)
Younan Xia, University of Washington (United States)
Hai Xiao, Missouri University of Science and Technology (United States)

Session Chairs

1 Distributed Sensors, Raman, and Brillouin Sensing
 Anbo Wang, Virginia Polytechnic Institute and State University (United States)
 Alexis Mendez, MCH Engineering LLC (United States)

2 Fiber Grating Sensors I
 Jerry J. Benterou, Lawrence Livermore National Laboratory (United States)
 Stephen J. Mihailov, Communications Research Center Canada (Canada)

3 Fiber Grating Sensors II
 Eric Udd, Columbia Gorge Research (United States)
 Paul Lefebvre, LxDATA (Canada)

4 Analysis of Light and Effects on Sensors
 Robert P. Dahlgren, University of California, Santa Cruz (United States)
 Jeff Bush, Optiphase, Inc. (United States)

5 Interferometric Sensors
 Jeff Bush, Optiphase, Inc. (United States)
 Robert P. Dahlgren, University of California, Santa Cruz (United States)

6 Temperature and Pressure Measurements and High-Temperature Sensors
 Gary Pickrell, Virginia Polytechnic Institute and State University (United States)
 Anbo Wang, Virginia Polytechnic Institute and State University (United States)
7 Electromagnetic Radiation and Particle Sensors
Gary Pickrell, Virginia Polytechnic Institute and State University
(United States)
Anbo Wang, Virginia Polytechnic Institute and State University
(United States)

8 Photonic Crystal Fibers and Sensors
Henry H. Du, Stevens Institute of Technology (United States)
Introduction

SPIE has been sponsoring conferences on fiber optic sensor technology for over 30 years, and the Fiber Optic Sensors and Applications VI conference continues this tradition. Three fiber optic sensor conferences have been combined in an effort to provide a more comprehensive overview of the technology and its applications than could have been provided by a single conference. It is hoped that in the future this conference will offer a yearly venue for useful discussions between researchers and developers of this technology, as well as those who are striving to apply it to the real world.

Over the past 30 years, some of the technology has reached considerable maturity with the widespread deployment of fiber optic gyro technology, the usage of fiber optic acoustic sensors for undersea applications, fiber optic current sensors used to support electrical grids, and widespread deployment of fiber optic sensors on civil structures worldwide. This maturity has lead to an increase in the number of companies offering fiber optic sensor products and the overall size of the market. At the same time, there are many application areas that have yet to be explored which has resulted in a number of new fiber optic sensor designs that offer promise of new markets in the future. It is also apparent that each new application brings new sets of challenges as well as opportunities.

The result has been a continuing revitalization of the fiber optic sensor field that is apparent in the papers that are contained in these proceedings.

Eric Udd
Anbo Wang
Henry Du