Contents

vii Conference Committee
ix Introduction

PLENARY SESSION

7405 02 Sub-nanometer resolution for the inspection of reflective surfaces using white light (Plenary Paper) [7405-07]
W. Jüptner, T. Bothe, Bremer Institut für angewandte Strahltechnik (Germany)

SESSION 1 NANOMANUFACTURING METROLOGY I

7405 03 A decade of commitment from the NIST Manufacturing Engineering Laboratory to nanomanufacturing and nanometrology (Invited Paper) [7405-01]
K. W. Lyons, M. T. Postek, National Institute of Standards and Technology (United States)

7405 04 Nanoscale dimensional metrology in Russia (Invited Paper) [7405-02]
V. P. Gavrilenko, Ctr. for Surface and Vacuum Research (Russian Federation); Y. A. Novikov, A. V. Rakov, A. M. Prokhorov General Physics Institute (Russian Federation); P. A. Todua, Ctr. for Surface and Vacuum Research (Russian Federation)

7405 05 Measurement traceability and quality assurance in a nanomanufacturing environment (Invited Paper) [7405-03]
N. G. Orji, R. G. Dixson, National Institute of Standards and Technology (United States); A. Cordes, B. D. Bunday, J. A. Allgair, International SEMATECH Manufacturing Initiative (United States)

SESSION 2 NANOMANUFACTURING METROLOGY II

7405 07 Measurement of thickness of native silicon dioxide with a scanning electron microscope [7405-05]
V. P. Gavrilenko, Ctr. for Surface and Vacuum Research (Russian Federation); Y. A. Novikov, A. V. Rakov, A. M. Prokhorov General Physics Institute (Russian Federation); P. A. Todua, Ctr. for Surface and Vacuum Research (Russian Federation)

7405 08 Silica nanoparticle dispersion size measurement using dielectrophoresis on a microfabricated electrode array [7405-06]
Y. Qiao, J. Lai, D. Hofeldt, 3M Co. (United States)

7405 0A Methods for TEM analysis of NIST’s single-walled carbon nanotube Standard Reference Material [7405-08]
E. Mansfield, R. Geiss, J. A. Fagan, National Institute of Standards and Technology (United States)
Towards accurate and reproducible metrology of manufactured ZnO nanoparticles

V. A. Coleman, A. La Fontaine, T. Endmann, Å. K. Jämtling, J. Herrmann, J. Miles, National Measurement Institute of Australia (Australia)

SESSION 3 INSTRUMENTATION AND STANDARDS FOR NANOMANUFACTURING I

Improved diffraction-based overlay metrology by use of two dimensional array target

Y.-S. Ku, H.-L. Pang, W. Hsu, D.-M. Shyu, Industrial Technology Research Institute (Taiwan)

High-performance multi-channel fiber-based absolute distance measuring interferometer system

L. L. Deck, Zygo Corp. (United States)

Interferometric imaging ellipsometry: fundamental study

S. Sato, S. Ando, The Univ. of Tokyo (Japan)

SESSION 4 INSTRUMENTATION AND STANDARDS FOR NANOMANUFACTURING II

Independent measurements of force and position in atomic force microscopy

A. B. Churnside, G. M. King, T. T. Perkins, JILA, Univ. of Colorado at Boulder (United States) and National Institute of Standards and Technology (United States)

Spectral effects of AFM tip geometry

C. Hahlweg, H. Rothe, Helmut-Schmidt Univ. (Germany)

Non-linear distortions caused by AFM-tip geometry and limitations of reconstruction on discrete data

C. Hahlweg, H. Rothe, Helmut-Schmidt Univ. (Germany)

Improvements to spectral spot-scanning technique for accurate and efficient data acquisition

J. D. Bray, K. M. Gaab, B. M. Lambert, T. S. Lomheim, The Aerospace Corp. (United States)

SESSION 5 INSTRUMENTATION AND STANDARDS FOR NANOMANUFACTURING III

Experimental methods for measurement of the modulation transfer function (MTF) for time-delay-and-integrate (TDI) charge coupled device (CCD) image sensors

B. M. Lambert, J. M. Harbold, The Aerospace Corp. (United States)

An improved phase quadrature correction method by fitting the pesudo quadrature phase difference

C.-W. Liang, Y.-S. Tsai, National Central Univ. (Taiwan)

Nonstandard refraction of light from one-dimensional dielectric quasi-periodic surfaces

Z.-H. Gu, Surface Optics Corp. (United States); A. Wang, Univ. of Science and Technology of China (China)
SESSION 6 INSTRUMENTATION AND STANDARDS FOR NANOMANUFACTURING IV

7405 0Q Front-side illuminated CMOS spectral pixel response and modulation transfer function characterization: impact of pixel layout details and pixel depletion volume [7405-26]
J. D. Bray, L. W. Schumann, T. S. Lomheim, The Aerospace Corp. (United States)

7405 0R 193 nm angle-resolved scatterfield microscope for semiconductor metrology [7405-27]
Y. J. Sohn, National Institute of Standards and Technology (United States) and KT Consulting Inc. (United States); R. Quintanilha, National Institute of Standards and Technology (United States); B. M. Barnes, National Institute of Standards and Technology (United States) and KT Consulting Inc. (United States); R. M. Silver, National Institute of Standards and Technology (United States)

7405 0S Surface-sensitive strain analysis of Si/SiGe line structures by Raman and UV-Raman spectroscopy [7405-28]
M. Roelke, M. Hecker, GLOBALFOUNDARIES Inc. (Germany); P. Hermann, GLOBALFOUNDARIES Inc. (Germany) and Fraunhofer-Ctr. Nanoelectronic Technologies (Germany); D. Lehninger, Y. Ritz, E. Zschech, GLOBALFOUNDARIES Inc. (Germany); V. Vartanian, International SEMATECH Manufacturing Initiative (United States)

7405 0T Photo-reflectance characterization of USJ activation in millisecond annealing [7405-29]
W. Chism, Xitronix Corp. (United States); M. Current, Michael Current Scientific (United States); V. Vartanian, International SEMATECH Manufacturing Initiative (United States)

7405 0U Role of supercontinuum in the fragmentation of colloidal gold nanoparticles in solution [7405-31]
F. A. Videla, Ctr. de Investigaciones Ópticas (Argentina) and Univ. Nacional de la Plata (Argentina); G. A. Torchia, Ctr. de Investigaciones Ópticas (Argentina); D. S. Schinca, L. B. Scaffardi, Ctr. de Investigaciones Ópticas (Argentina) and Univ. Nacional de La Plata (Argentina); P. Moreno, C. Méndez, L. Roso, Univ. de Salamanca (Spain); L. Giovanetti, J. Ramallo Lopez, Univ. Nacional de la Plata (Argentina)

POSTER SESSION

7405 0V Imaging comparison of reflection and transmission grating systems [7405-19]
L. Wan, W. Zhang, G. Yang, X. Shen, Guangxi Univ. (China)

7405 0W Measuring a laser focal spot on a large intensity range: effect of optical component laser damages on the focal spot [7405-33]
S. Bouillet, S. Chico, L. Le Deroff, G. Razé, R. Courchinalux, Commissariat à l’Energie Atomique (France)

7405 0Y Effect of the measurement wavelength on a multi-dielectric mirror wavefront [7405-35]
S. Tournois, S. Bouillet, J. Daubis, E. Lavastre, Commissariat à l’Energie Atomique (France)

7405 0Z Detecting molecular stress in metals [7405-36]
E. Hernandez-Gomez, CICATA Querétaro (Mexico); J. G. Suarez-Romero, Instituto Tecnologico de Querétaro (Mexico); J. B. Hurtado-Ramos, CICATA Querétaro (Mexico)

Author Index
Conference Committee

Symposium Chairs

David L. Andrews, University of East Anglia Norwich (United Kingdom)
James G. Grote, Air Force Research Laboratory (United States)

Conference Chair

Michael T. Postek, National Institute of Standards and Technology (United States)

Conference Cochair

John A. Allgair, SEMATECH, Inc. (United States) and Freescale Semiconductors, Inc. (United States)

Program Committee

Shaochen Chen, National Science Foundation (United States)
Daniel J. C. Herr, Semiconductor Research Corporation (United States)
Mark D. Hoover, The National Institute for Occupational Safety and Health (United States)
David C. Joy, The University of Tennessee (United States)
Kevin W. Lyons, National Institute of Standards and Technology (United States)
Jeffrey D. Morse, University of Massachusetts, Amherst (United States)
N. George Orji, National Institute of Standards and Technology (United States)
Yi Qiao, 3M Company (United States)
Nora Savage, U.S. Environmental Protection Agency (United States)
John Small, National Institute of Standards and Technology (United States)

Session Chairs

1 Nanomanufacturing Metrology I
John A. Allgair, SEMATECH Inc. (United States)
N. George Orji, National Institute of Standards and Technology (United States)

2 Nanomanufacturing Metrology II
John Small, National Institute of Standards and Technology (United States)
Shaochen Chen, National Science Foundation (United States)
3 Instrumentation and Standards for Nanomanufacturing I
Yi Qiao, 3M Company (United States)
Jeffrey D. Morse, University of Massachusetts, Amherst (United States)

4 Instrumentation and Standards for Nanomanufacturing II
John Small, National Institute of Standards and Technology (United States)
N. George Orji, National Institute of Standards and Technology (United States)

5 Instrumentation and Standards for Nanomanufacturing III
John Small, National Institute of Standards and Technology (United States)
Kevin W. Lyons, National Institute of Standards and Technology (United States)

6 Instrumentation and Standards for Nanomanufacturing IV
John Small, National Institute of Standards and Technology (United States)
Jeffrey D. Morse, University of Massachusetts, Amherst (United States)
Introduction

The U.S. Federal Government has invested over $10 billion cumulatively between 2001–2009 in nanotechnology related research, and if you include the 2010 budget request the number swells to almost $12 billion. In addition, U.S. companies have invested at least an equivalent amount, if not more. Worldwide, similar levels of investment have been made. Manufacturing is the primary bridge between the discoveries in nanoscience and the real world nano-enabled products. Nanomanufacturing is the vehicle by which the nation and the world will realize the promise of major technological innovation across the spectrum of products that is expected to affect virtually every industrial sector.

In order for nanomanufactured products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical, and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately addressed and handled, and liability issues are addressed.

The 2009 SPIE conference, Instrumentation, Metrology, and Standards for Nanomanufacturing III, addresses issues critical to the effective development of a robust nanomanufacturing environment. This includes the necessary production instrumentation, metrology, and standards, as well as the integration of the instruments, their interoperability, and necessary data management. The development of advanced instrumentation, metrology, and standards will allow the accurate measurement of physical dimensions, properties, functionality, purity, and emissions that will constitute nanomanufacturing being measured and characterized.

The goal is to enable production to be scalable, controllable, predictable, and repeatable to meet the ever varying market needs. Further, if a nano-enabled product cannot be made safely, it should not be manufactured. This conference and proceedings supports the development of the required instrumentation, standards, and metrology. The goal of this conference is to become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology, and standards which are key elements for the success of nanomanufacturing and to reap the benefits of the investments in this new technology.

Michael T. Postek
John A. Allgair