Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>MULTIPLE SURFACES AND FREEFORM OPTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7426 02</td>
<td>High-resolution measurement of internal interface of optically transparent materials [7426-01]</td>
</tr>
<tr>
<td></td>
<td>C.-W. Chang, I.-J. Hsu, Chung Yuan Christian Univ. (Taiwan)</td>
</tr>
<tr>
<td>7426 03</td>
<td>Microfluidic design and fabrication of wafer-scale varifocal liquid lens [7426-02]</td>
</tr>
<tr>
<td></td>
<td>J. Y. Lee, S. T. Choi, S. Lee, W. Kim, Samsung Advanced Institute of Technology (Korea, Republic of)</td>
</tr>
<tr>
<td>7426 04</td>
<td>Fabrication and characterization of polymer based spatial light modulators [7426-03]</td>
</tr>
<tr>
<td>7426 05</td>
<td>Comparison of freeform manufacturing techniques in the production of monolithic lens arrays [7426-04]</td>
</tr>
<tr>
<td></td>
<td>G. E. Davis, II-VI Infrared (United States); J. W. Roblee, AMETEK Precitech, Inc. (United States); A. R. Hedges, II-VI Infrared (United States)</td>
</tr>
<tr>
<td>7426 06</td>
<td>Nanometer level freeform surface measurements with the NANOMEFOS non-contact measurement machine [7426-05]</td>
</tr>
<tr>
<td></td>
<td>R. Henselman, TNO Science and Industry (Netherlands); L. Cacace, AC Optomechanix (Netherlands) and Technische Univ. Eindhoven (Netherlands); G. Kramer, TNO Science and Industry (Netherlands); N. Rosielle, M. Steinbuch, Technische Univ. Eindhoven (Netherlands)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>DEVELOPMENTS IN SURFACE FINISHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>7426 07</td>
<td>Accuracy of freeform manufacturing processes [7426-06]</td>
</tr>
<tr>
<td></td>
<td>G. P. H. Gubbels, B. W. H. Venrooy, R. Henselmanns, TNO Science and Industry (Netherlands)</td>
</tr>
<tr>
<td>7426 08</td>
<td>Ultraprecision machining techniques for the fabrication of freeform surfaces in highly integrated optical microsystems [7426-07]</td>
</tr>
<tr>
<td></td>
<td>S. Stoebenau, S. Sinzinger, Technische Univ. Ilmenau (Germany)</td>
</tr>
<tr>
<td>7426 09</td>
<td>Increased UV transmission by improving the manufacturing processes for FS [7426-08]</td>
</tr>
<tr>
<td>7426 0A</td>
<td>Varying electro-kinetic interactions to achieve predictable removal rates and smooth surfaces on ZnS [7426-09]</td>
</tr>
</tbody>
</table>
SESSION 3 MRF AND ASPHERES

7426 0B Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing [7426-10]
S. N. Shafrir, OptiPro Systems (United States) and Univ. of Rochester (United States); H. J. Romanofsky, M. Skarlinski, M. Wang, C. Miao, S. Salzman, T. Chartier, J. Mici, J. C. Lambropoulos, R. Shen, H. Yang, S. D. Jacobs, Univ. of Rochester (United States)

7426 0C Normal force and drag force in magnetorheological finishing [7426-11]
C. Miao, S. N. Shafrir, J. C. Lambropoulos, S. D. Jacobs, Univ. of Rochester (United States)

7426 0D Contributions of nanodiamond abrasives and deionized water in magnetorheological finishing of aluminum oxynitride [7426-12]
C. Miao, J. C. Lambropoulos, H. Romanofsky, S. N. Shafrir, S. D. Jacobs, Univ. of Rochester (United States)

7426 0F Simulation and analysis of the polishing process for aspheres [7426-14]
A. Kelm, M. Hänle, R. Boerret, Hochschule Aalen (Germany); S. Sinzinger, Technische Univ. Ilmenau (Germany)

7426 0G Edge tool influence function library using the parametric edge model for computer controlled optical surfacing [7426-15]
D. W. Kim, W. H. Park, College of Optical Sciences, The Univ. of Arizona (United States); S.-W. Kim, Yonsei Univ. (Korea, Republic of); J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States)

SESSION 4 SURFACE SHAPING

7426 0I Calculating BRDFs from surface PSDs for moderately rough optical surfaces [7426-42]
J. E. Harvey, N. Choi, A. Krywonos, College of Optics & Photonics, Univ. of Central Florida (United States) J. Marcen, E. U. Optica, Univ. Complutense de Madrid (Spain)

SESSION 5 LARGE ASPHERE SURFACING AND TESTING I

7426 0J Swing-arm optical CMM for aspherics [7426-18]
P. Su, C. J. Oh, R. E. Parks, J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States)

7426 0K Manufacturing and performance test of a 800 mm space optic [7426-19]
M. R. Krödel, ECM GmbH (Germany); T. Ozaki, M. Kume, Mitsubishi Electric Corp. (Japan); Y. Y. Yui, H. Imai, H. Katayama, Y. Tanig, T. Nakagawa, Japan Aerospace Exploration Agency (Japan)

7426 0L Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces [7426-20]
J. H. Burge, S. Benjamin, D. Caywood, C. Noble, M. Novak, C. Oh, R. Parks, B. Smith, P. Su, M. Valente, C. Zhao, College of Optical Sciences, The Univ. of Arizona (United States)

7426 0M Non-null interferometric aspheric testing with partial null lens and reverse optimization [7426-21]
D. Liu, Y. Yang, Y. Luo, C. Tian, Y. Shen, Y. Zhuo, Zhejiang Univ. (China)
Verification procedure for the wavefront quality of the primary mirrors for the MRO interferometer [7426-22]
E. J. Bakker, A. Olivares, New Mexico Tech, Magdalena Ridge Observatory (United States); R. A. Schmell, R. A. Schmell, D. Gartner, Optical Surface Technologies, LLC (United States); A. Jaramillo, W.M. Keck Observatory (United States); K. Romero, A. Rael, J. Lewis, Optical Surface Technologies, LLC (United States)

SESSION 6 LARGE ASPHERE SURFACING AND TESTING II

Monolithic versus segmented primary mirror concepts for space telescopes [7426-23]
S. E. Kendrick, Ball Aerospace & Technologies Corp. (United States)

Measurement of high-departure aspheric surfaces using subaperture stitching with variable null optics [7426-24]
P. Murphy, G. DeVries, J. Fleig, G. Forbes, A. Kulawiec, D. Miladinovic, QED Technologies, Inc. (United States)

Stitching interferometry: the practical side of things [7426-25]
M. Bray, MBO-Metrology (France)

Research of precision interference locating method for a partial null compensator at aspheric testing [7426-26]
Y. Yang, D. Liu, G. Xin, C. Tian, Y. Luo, Y. Shen, Y. Zhuo, Zhejiang Univ. (China)

Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres [7426-27]
M. B. Dubin, P. Su, J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States)

SESSION 7 INTERFEROMETRY

Limits for interferometer calibration using the random ball test [7426-29]
P. Zhou, J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States)

Orthonormal vector polynomials in a unit circle, application: fitting mapping distortions in a null test [7426-30]
C. Zhao, J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States)

POSTER SESSION

Scanning pentaprism measurements of off-axis aspherics II [7426-32]
P. Su, College of Optical Sciences, The Univ. of Arizona (United States); J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States) and Steward Observatory, The Univ. of Arizona (United States); B. Cuerden, R. Allen, H. M. Martin, Steward Observatory, The Univ. of Arizona (United States)
<table>
<thead>
<tr>
<th>Venue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imaging analysis of a novel compound diffractive telescope system</td>
<td>J. Yue, Changchun Institute of Optics (China) and Graduate School of the Chinese Academy of Sciences (China); Z. Lu, H. Liu, W. Xu, H. Zhang, Changchun Institute of Optics (China); H. Zhang, Y. Liu, Changchun Institute of Optics (China) and Graduate School of the Chinese Academy of Sciences (China)</td>
</tr>
<tr>
<td></td>
<td>High-speed and precision auto-focusing system for direct laser lithography</td>
<td>D.-I. Kim, Korea Basic Science Institute (Korea, Republic of); H.-G. Rhee, J.-B. Song, Y.-W. Lee, Korea Research Institute of Standards and Science (Korea, Republic of)</td>
</tr>
<tr>
<td></td>
<td>Development of a large ion beam figuring facility for correction of optics up to 1.7 m diameter</td>
<td>M. Ghigo, Osservatorio Astronomico di Brera (Italy); S. Cornelli, Univ. degli Studi Milano-Bicocca (Italy); R. Canestrari, Univ. degli Studi dell'Insubria (Italy); D. Garegnani, Osservatorio Astronomico di Brera (Italy)</td>
</tr>
<tr>
<td></td>
<td>Fabrication of 300-mm silicon reference wafer by using direct laser writer</td>
<td>H.-G. Rhee, Korea Research Institute of Standards and Science (Korea, Republic of); D.-I. Kim, Korea Basic Science Institute (Korea, Republic of); S.-K. Hong, J.-B. Song, Y.-W. Lee, Korea Research Institute of Standards and Science (Korea, Republic of)</td>
</tr>
<tr>
<td></td>
<td>Laser tracker surface measurements of the 8.4m GMT primary mirror segment</td>
<td>T. L. Zobrist, College of Optical Sciences, The Univ. of Arizona (United States); J. H. Burge, College of Optical Sciences, The Univ. of Arizona (United States) and Steward Observatory, The Univ. of Arizona (United States); H. M. Martin, Steward Observatory, The Univ. of Arizona (United States)</td>
</tr>
<tr>
<td></td>
<td>Experimental investigation of the dimensions and quality of laser-drilled holes in metals</td>
<td>M. Stafe, C. Negutu, I. Vladoiu, A. N. Ducariu, I. M. Popescu, Univ. Politehnica Bucuresti (Romania)</td>
</tr>
<tr>
<td></td>
<td>Parametric and scattering characterization of PDMS membranes for optical applications</td>
<td>A. Santiago-Alvarado, Univ. Tecnologica de la Mixteca (Mexico); S. Vazquez Montiel, J. Munoz-Lopez, J. Castro-Ramos, Instituto Nacional de Astrofisica (Mexico); J. A. Delgado Atencio, Univ. de la Habana (Cuba)</td>
</tr>
<tr>
<td></td>
<td>Modified alignment CGHs for aspheric surface test</td>
<td>J.-B. Song, H.-S. Yang, H.-G. Rhee, Y.-W. Lee, Korea Research Institute of Standards and Science (Korea, Republic of)</td>
</tr>
</tbody>
</table>
Conference Committee

Conference Chairs

James H. Burge, College of Optical Sciences/The University of Arizona (United States) and The University of Arizona/Steward Observatory (United States)
Oliver W. Fähnle, FISBA OPTIK AG (Switzerland)
Ray Williamson, Ray Williamson Consulting (United States)

Program Track Chair

H. Philip Stahl, NASA Marshall Space Flight Center (United States)

Program Committee

Dave Baiocchi, Sandia National Laboratory (United States)
Michael Bray, MBO-Metrology (France)
Andrew R. Clarkson, L-3 Brashear (United States)
Glen C. Cole, L-3 Communications Tinsley Laboratory Inc. (United States)
David A. Content, NASA Goddard Space Flight Center (United States)
Olaf Dambon, Fraunhofer-Institut für Produktionstechnologie (Germany)
Peter J. de Groot, Zygo Corporation (United States)
Roland Geyl, Sagem SA (France)
John E. Greivenkamp, College of Optical Sciences/The University of Arizona (United States)
Stephen D. Jacobs, University of Rochester (United States)
Stephen E. Kendrick, Ball Aerospace & Technologies Corporation (United States)
Stephen J. Martinek, 4D Technology Corporation (United States)
Gary Matthews, ITT Industries, Inc. (United States)
Chunlin Miao, University of Rochester (United States)
Ted Mooney, ITT Corporation (United States)
Robert E. Parks, Optical Perspectives Group, LLC (United States)
Joseph L. Robichaud, L-3 Communications SSG-Tinsley (United States)
Joanna Schmit, Veeco Instruments Inc. (United States)
Shai N. Shafir, University of Rochester (United States)
Peter Z. Takacs, Brookhaven National Laboratory (United States)
Martin J. Valente, College of Optical Sciences/The University of Arizona (United States)
David D. Walker, Zeeko Ltd. (United Kingdom)
Xue-Jun Zhang, Changchun Institute of Optics, Fine Mechanics and Physics (China)
Session Chairs

1 Multiple Surfaces and Freeform Optics
Jessica E. DeGroote Nelson, Optimax Systems, Inc. (United States)

2 Developments in Surface Finishing
Ray Williamson, Ray Williamson Consulting (United States)

3 MRF and Aspheres
Jessica E. DeGroote Nelson, Optimax Systems, Inc. (United States)

4 Surface Shaping
Ray Williamson, Ray Williamson Consulting (United States)

5 Large Asphere Surfacing and Testing I
Steve Jacobs, University of Rochester (United States)

6 Large Asphere Surfacing and Testing II
Ray Williamson, Ray Williamson Consulting (United States)

7 Interferometry
Ray Williamson, Ray Williamson Consulting (United States)

Panel Discussion: Issues with Mid-Frequency Surface Errors for Metrology and Fabrication
James H. Burge, Panel Moderator College of Optical Sciences, The University of Arizona (United States)
Leslie L. Deck, Zygo Corporation (United States)
James E. Harvey, CREOL, The College of Optics and Photonics, University of Central Florida (United States)
Jay Kumler, Coastal Optical Systems, Inc. (United States)
Paul E. Murphy, QED Technologies, Inc. (United States)
Introduction

This is an exciting time in the development of optical components. At first glance, optical and optomechanical design, substrate casting, surface finishing, and interferometry may appear to be the legacy base technologies upon which standard components are built, while the new developments are to be found in such disciplines as nonlinear effects, biomimetics, and quantum cryptography. A careful reading of these conference proceedings will show that such a superficial view is in error. Extensions of interferometry through stitching, profiling, numerous nulling methods, and computer-generated holograms have led to orders of magnitude improvements in capabilities for aspheric departure with substantially improved lateral and depth resolution. Breakthroughs in the basic science underlying lapping and polishing promise substantial improvements in both removal rate and surface quality across the spectrum of substrate materials. Surface fabrication, new machine types, geometries, controls, and computational models enable the deterministic realization of formerly unreasonable forms and tolerances. Optomechanical design, coupled with new casting, finishing, and testing methods, is creating new generations of large, lightweight telescopes with sensitivities and resolutions beyond our imaginations of only a few years ago. And, optical design is now closing the modeling gaps between tracing ideal rays, polynomial aberrations, and random scatter with a deeper understanding of the effects of statistical and mid-spatial-frequency form errors and their proper specification.

We’re pleased to present these manuscripts, proud of our authors, and thankful for their hard and innovative work, the support of their organizations, and the good offices of SPIE.

James H. Burge
Oliver W. Fähnle
Ray Williamson