Front Matter: Volume 7714
Contents

ix Conference Committee
xi Introduction

PHOTONIC CRYSTAL FIBRE SENSORS: JOINT SESSION WITH CONFERENCE 7726

7714 02 Bragg fibre for sensing applications [7714-32]
O. Frazão, J. M. Baptista, J. L. Santos, INESC Porto (Portugal); P. Roy, R. Jamier, S. Février, XLIM, CNRS, Univ. de Limoges (France)

7714 03 Sensing characteristics of long period gratings and rocking filters based on highly birefringent boron-doped photonic crystal fiber and fabricated by a CO₂ laser [7714-33]
J. P. Carvalho, INESC Porto (Portugal) and Univ. do Porto (Portugal); G. Statkiewicz-Barabach, A. Anuszkiewicz, Wroclaw Univ. of Technology (Poland); J. M. Baptista, INESC Porto (Portugal) and Univ. da Madeira (Portugal); O. Frazão, INESC Porto (Portugal); J. Wojcik, Univ. Marii Curie-Sklodowskiej (Poland); J. L. Santos, INESC Porto (Portugal) and Univ. do Porto (Portugal); W. Urbanczyk, Wroclaw Univ. of Technology (Poland)

NONLINEAR AND ACTIVE SILICA PCF

7714 04 Adjustable supercontinuum laser source with low coherence length and low timing jitter [7714-01]
M. Andreana, XLIM, CNRS and Univ. de Limoges (France); A. Bertrand, Y. Hernandez, Multitel A.S.B.L. (Belgium); P. Leproux, V. Couderc, XLIM, CNRS and Univ. de Limoges (France); S. Hilaire, G. Huss, Leukos (France); D. Giannone, Multitel A.S.B.L. (Belgium); A. Tonello, A. Labruyère, XLIM, CNRS and Univ. de Limoges (France); N. Rongeau, P. Nérin, Horiba Medical (France)

7714 05 Amplification of femtosecond pulses in large mode area Bragg fibers [7714-02]
D. A. Gaponov, S. Février, P. Roy, XLIM, CNRS and Univ. de Limoges (France); M. Hanna, D. N. Papadopoulos, F. Druon, L. Daniault, P. Georges, Lab. Charles Fabry de l'Institut d'Optique, CNRS, Univ. Paris-Sud (France); M. E. Likhachev, Fiber Optics Research Ctr. (Russian Federation); M. Y. Salganskii, M. V. Yashkov, Institute of Chemistry of High Purity Substances (Russian Federation)

7714 06 Effect of inhomogeneities on backward and forward Brillouin scattering in photonic crystal fibers [7714-03]
B. Stiller, M. Delqué, M. W. Lee, Institut FEMTO-ST, Univ. de Franche-Comté (France); S. Foaleng Mafang, J.-C. Beugnot, École Polytechnique Fédérale de Lausanne (Switzerland); A. Kudlinski, Lab. de Physique des Lasers Atomes et Molécules, CNRS, IRCICA (France); L. Thévenaz, École Polytechnique Fédérale de Lausanne (Switzerland); H. Maillotte, T. Sylvestre, Institut FEMTO-ST, Univ. de Franche-Comté (France)
Deep ultraviolet supercontinuum generation in optical nanofibers by femtosecond pulses at 400-nm wavelength (Best Student Paper Award) [7714-04]
A. M. Heidt, IPHT Jena (Germany) and Stellenbosch Univ. (South Africa); A. Hartung, H. Bartelt, IPHT Jena (Germany)

Luminescence of PbS quantum dots on a silica microstructured fiber [7714-05]
L. C. Barbosa, E. F. Chillcce, C. M. Cordeiro, Univ. Estadual de Campinas (Brazil)

NONLINEAR CHALCOGENIDE PCF

Experimental observation of infrared spectral enlargement in As$_2$S$_3$ suspended core microstructured fiber (Invited Paper) [7714-06]
M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, Lab. Interdisciplinaire Carnot de Bourgogne, CNRS, Univ. de Bourgogne (France); I. Skripachev, Y. Messadeq, UNESP (Brazil); G. Renversez, Institut Fresnel, CNRS, Univ. Aix-Marseille (France); M. Szpulak, Wroclaw Univ. of Technology (Poland); J. Troles, Sciences Chimiques de Rennes, CNRS, Univ. de Rennes 1 (France); L. Brilland, Plate-forme d’Etude et de Recherche sur les Fibres Optiques Spéciales (France); F. Smektala, Lab. Interdisciplinaire Carnot de Bourgogne, CNRS, Univ. de Bourgogne (France)

Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres [7714-08]
N. Ducros, XLIM, CNRS and Univ. de Limoges (France); F. Morin, Lab. Charles Fabry de l’Institut d’Optique, Univ. Paris-Sud (France); K. Cook, The Univ. of Sydney (Australia); A. Labruyère, S. Février, G. Humbert, XLIM, CNRS and Univ. de Limoges (France); F. Druon, M. Hanna, P. Georges, Lab. Charles Fabry de l’Institut d’Optique, Univ. Paris-Sud (France); J. Canning, The Univ. of Sydney (Australia); R. Buczyński, Univ. of Warsaw (Poland); D. Pysz, R. Stepień, Institute of Electronic Materials Technology (Poland)

The tellurite highly nonlinear microstructured fibers for THG and SC generations [7714-09]
M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, Y. Ohishi, Toyota Technological Institute (Japan)

POLYMER PCF

Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre (Invited Paper) [7714-10]
I. P. Johnson, D. J. Webb, Aston Univ. (United Kingdom); K. Kalli, Cyprus Univ. of Technology (Cyprus); M. C. J. Large, A. Argyros, The Univ. of Sydney (Australia)

Investigation of sensing properties of microstructured polymer optical fibres [7714-12]
J. Witt, M. Steffen, M. Schukar, K. Krebber, Bundesanstalt für Materialforschung und -prüfung (Germany)

Measurements of stress-optic coefficient and Young’s modulus in PMMA fibers drawn under different conditions [7714-13]
M. K. Szczurowski, T. Martykien, G. Statkiewicz-Barabach, Wroclaw Univ. of Technology (Poland); L. Khan, D. J. Webb, Aston Univ. (United Kingdom); C. Ye, J. Duleiu-Barton, Univ. of Southampton (United Kingdom); W. Urbanczyk, Wroclaw Univ. of Technology (Poland)
MODELLING AND NUMERICAL ANALYSIS OF PCF I

7714 0H Theory of second-harmonic generation in silica nanowires (Invited Paper) [7714-14]
J. Laegsgaard, Technical Univ. of Denmark (Denmark)

7714 0I Higher-order mode suppression in rod-type photonic crystal fibers with sectioned doping and enlarged core [7714-15]
F. Poli, E. Coscelli, D. Passaro, A. Cucinotta, S. Selleri, Univ. degli Studi di Parma (Italy);
J. Laegsgaard, Technical Univ. of Denmark (Denmark); J. Broeng, Crystal Fibre A/S (Denmark)

7714 0J Single mode and single polarization operation in photonic crystal fibers [7714-16]

7714 0K Influence of transverse perturbation of soliton propagation direction on laser radiation evolution along the layered medium [7714-17]
V. A. Trofimov, T. M. Lysak, O. V. Matusevich, Lomonosov Moscow State Univ. (Russian Federation)

MODELLING AND NUMERICAL ANALYSIS OF PCF II

7714 0N Optimal design of broadband photonic crystal fibre long-period gratings for evanescent absorption sensing [7714-20]
J. Kanka, Institute of Photonics and Electronics (Czech Republic)

DEVICE DEVELOPMENT BASED ON PCF

7714 0P Short wavelength (UV + VIS) guidance in kagomé lattice hollow core photonic crystal fibre (Invited Paper) [7714-22]
S. Février, B. Beaudou, XLIM, CNRS, Univ. de Limoges (France)

7714 0Q Photonic crystal fiber filled with a high index electro-optic polymer [7714-23]
M. Balakrishnan, R. Spittel, J. Kobelke, K. Schuster, V. Reichel, H. Bartelt, IPHT Jena (Germany)

7714 0S UV Bragg grating inscription in germanium-doped photonic crystal fibers [7714-25]
T. Geenraert, Brussels Photonics Team B-PHOT, Vrije Univ. Brussel (Belgium); M. Becker, IPHT Jena (Germany); P. Mergo, Univ. Marii Curie-Skłodowskiej (Poland); T. Nasilowski, Brussels Photonics Team B-PHOT, Vrije Univ. Brussel (Belgium); J. Wojcik, Univ. Marii Curie-Skłodowskiej (Poland); W. Urbanczyk, Wrocław Univ. of Technology (Poland); M. Rothhardt, IPHT Jena (Germany); C. Chojetzki, FBGS Technologies GmbH (Germany); H. Bartelt, IPHT Jena (Germany); F. Berghmans, H. Thienpont, Brussels Photonics Team B-PHOT, Vrije Univ. Brussel (Belgium)
PHYSICAL PROPERTIES OF PCF

7714 0U Demonstration of multimode interference effect for PCF connectors (Invited Paper) [7714-27]
C. D. Stacey, BAE Systems Advanced Technology Ctr. (United Kingdom); C. Clarke, Imperial College London (United Kingdom); R. G. Clarke, D. W. Charlton, BAE Systems Advanced Technology Ctr. (United Kingdom)

7714 0V Sagnac interferometer based on a suspended twin-core fibre [7714-28]
O. Frazão, INESC Porto (Portugal); J. M. Baptista, INESC Porto (Portugal) and Univ. da Madeira (Portugal); J. L. Santos, INESC Porto (Portugal) and Univ. do Porto (Portugal); J. Kobelke, K. Schuster, IPHT Jena (Germany)

7714 0W Modal decomposition for photonic crystal fibers using computer-generated holograms [7714-30]
O. A. Schmidt, D. Flamm, M. Duparré, Friedrich-Schiller-Univ. Jena (Germany)

7714 0X Optical, thermal, and mechanical characterization of photonic crystal fibers: results and comparisons [7714-31]
K. Borzycki, National Institute of Telecommunications (Poland); J. Kobelke, K. Schuster, IPHT Jena (Germany); J. Wójcik, Univ. Marii Curie-Skłodowskiej (Poland)

POSTER SESSION

7714 0Y The impact of ring core on chromatic dispersion of photonic quasicrystal fiber [7714-18]
S. Kim, C-S.. Kee, Gwangju Institute of Science and Technology (Korea, Republic of); J. Park, S. Lee, K. Oh, Yonsei Univ. (Korea, Republic of); C. G. Lee, Chosun Univ. (Korea, Republic of)

7714 0Z Broad spectral range measurement of chromatic dispersion of polarization modes in holey fibers by interferometric techniques [7714-29]
P. Hlubina, D. Ciprian, M. Kadulová, Technical Univ. of Ostrava (Czech Republic); T. Martynkien, W. Urbańczyk, Wroclaw Univ. of Technology (Poland)

7714 10 High resolution pulse distortion precompensation in nanosecond ytterbium-doped fiber amplifiers [7714-34]
L. Lago, Commissariat à l’Énergie Atomique (France); A. Mussot, M. Douay, IRCICA, CNRS, Univ. des Sciences et Technologies de Lille (France); E. Hugonnot, Commissariat à l’Énergie Atomique (France)

7714 11 Tunable liquid crystal filled photonic crystal fiber coupler [7714-35]
K. R. Khan, T. J. Hall, Univ of Ottawa (Canada)

7714 13 Large-mode-area Bragg fiber with microstructured core for suppression of high-order modes [7714-37]

7714 14 Arc fusion splicing of photonic crystal fibers to standard single mode fibers [7714-38]
K. Borzycki, National Institute of Telecommunications (Poland); J. Kobelke, K. Schuster, IPHT Jena (Germany); J. Wójcik, Univ. Marii Curie-Skłodowskiej (Poland)
Guiding properties of kagome-lattice hollow-core fibers [7714-39]
E. Coscelli, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, Univ. degli Studi di Parma (Italy)

Dispersion tailored microstructured fibers: core dopant effects [7714-40]
J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, H. Bartelt, IPHT Jena (Germany)

Author Index
Conference Committee

Symposium Chairs

Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Ronan Burgess, European Commission (Belgium)
Jürgen Popp, Institut für Photonische Technologien e.V. (Germany)
Peter Hartmann, SCHOTT AG (Germany)
Hugo Thienpont, Vrije Universiteit Brussel (Belgium)

Conference Chairs

Kyriacos Kalli, Cyprus University of Technology (Cyprus)
Waclaw Urbanczyk, Wrocław University of Technology (Poland)

Program Committee

Hartmut Bartelt, Institut für Photonische Technologien e.V. (Germany)
Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Benjamin J. Eggleton, The University of Sydney (Australia)
Sébastien Février, Université de Limoges (France)
Jiri Kanka, Institute of Photonics and Electronics (Czech Republic)
Jonathan C. Knight, University of Bath (United Kingdom)
Hanne Ludvigsen, Helsinki University of Technology (Finland)
B. M. Azizur Rahman, The City University (United Kingdom)
Karsten Rothwitt, Technical University of Denmark (Denmark)
Kay Schuster, Institut für Photonische Technologien e.V. (Germany)
Dmitry V. Skryabin, University of Bath (United Kingdom)
David J. Webb, Aston University (United Kingdom)
Alexei M. Zheltikov, Lomonosov Moscow State University (Russian Federation)

Session Chairs

Photonic Crystal Fibre Sensors: Joint Session with Conference 7726
Stavros Pissadakis, Foundation for Research and Technology-Hellas (Greece)

Hartmut Bartelt, Institut für Photonische Technologien e.V. (Germany)

1 Nonlinear and Active Silica PCF
Kyriacos Kalli, Cyprus University of Technology (Cyprus)

2 Nonlinear Chalcogenide PCF
Kay Schuster, Institut für Photonische Technologien e.V. (Germany)
3 Polymer PCF
Jiri Kanka, Institute of Photonics and Electronics (Czech Republic)

4 Modelling and Numerical Analysis of PCF I
Sébastien Février, Université de Limoges (France)

5 Modelling and Numerical Analysis of PCF II
B. M. Azizur Rahman, The City University (United Kingdom)

6 Device Development Based on PCF
David J. Webb, Aston University (United Kingdom)

7 Physical Properties of PCF
Waclaw Urbanczyk, Wroclaw University of Technology (Poland)
Introduction

It has been nearly twenty years since the conception of photonic crystal fibers, as devised by Philip St. J. Russell in unpublished work dating to 1991. That work was a development of the photonic crystal ideas of Yablonovich and John who published two milestone papers on photonic crystals in 1987. The photonic crystal fiber (PCF) has given the field of fiber optics a newfound resurgence, resulting in revolutionary research and practical breakthroughs that would have proven otherwise impossible with conventional optical fibers; these include octave-spanning light continua, air guidance of light with low loss over several kilometers, and endlessly single-mode fiber operating over several hundred nanometers. The unusual confinement characteristics of PCF have resulted in their use in applications such as fiber-optic communications and sensing, fiber lasers, nonlinear devices, high-power transmission, and highly sensitive gas sensors, amongst others.

The term photonic crystal fiber has been used extensively to cover a class of optical fibers that include the photonic band gap fiber (with light confinement through the band gap effect), hole-assisted or microstructure fiber (guiding light through a conventional high-index core modified by the presence of air holes), and Bragg fiber (photonic band gap fiber formed using multilayer, concentric rings).

This fourth conference in the series on photonic crystal fibers reports some of the latest developments of PCF. The strength of photonic crystal fiber relates to its versatility and flexibility in terms of fiber geometry and material used. The fabrication and design of PCF is reported for nonlinear and active silica and chalcogenide fibres and the latest developments of polymer based PCF, along with the characterization of PCF utilizing spectral interferometry. Developments of fiber-based light sources are supported by advances in super continuum generation through non-linear mixing in index-guiding crystal fibers. New device applications are demonstrated for Bragg and long period gratings in doped and infiltrated fibers. The stability of grating structures is examined as are sensing of external parameters such as temperature and strain. Great strides have been made in the modeling of PCF, and special sessions are devoted to the development of modeling and numerical analysis. The conference has several invited papers and a joint session held with the Optical Sensing and Detection Conference.

We hope the reader will find the conference proceedings as interesting as our recent meeting in Brussels.

Kyriacos Kalli
Waclaw Urbańczyk