Front Matter: Volume 7813
Remote Sensing System Engineering III

Philip E. Ardanuy
Jeffery J. Puschell
Editors

2 August 2010
San Diego, California, United States

Sponsored and Published by
SPIE
Contents

SESSION 1 REMOTE SENSING SYSTEM PRODUCTS AND ALGORITHMS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7813 04</td>
<td>An overview of the GOES-R ground segment architecture 7813-03</td>
<td>D. Hansen, Harris Corp. (United States); J. Bristow, NASA Goddard Space Flight Ctr. (United States); S. Kalluri, NOAA/NESDIS (United States); A. Weiner, G. Dittberner, Harris Corp. (United States)</td>
</tr>
<tr>
<td>7813 05</td>
<td>The product generation architecture for the GOES-R ground system 7813-04</td>
<td>G. Dittberner, Harris Corp. (United States); S. Kalluri, NOAA/NESDIS (United States); A. Weiner, M. Blanton, A. Tarpley, Harris Corp. (United States)</td>
</tr>
</tbody>
</table>

SESSION 2 SYSTEM PERFORMANCE MODELING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7813 07</td>
<td>Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared 7813-06</td>
<td>S. A. Cota, L. S. Kalman, The Aerospace Corp. (United States)</td>
</tr>
<tr>
<td>7813 08</td>
<td>Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared: generalization to arbitrary average scene temperatures 7813-07</td>
<td>C. J. Florio, S. A. Cota, S. K. Gaffney, The Aerospace Corp. (United States)</td>
</tr>
<tr>
<td>7813 09</td>
<td>Synthetic scene building for testing thermal signature tracking algorithms 7813-08</td>
<td>D. B. Rhodes, Z. Ninkov, Rochester Institute of Technology (United States); J. L. Pipher, C. W. McMurtry, Univ. of Rochester (United States); J. D. Newman, P. P. K. Lee, G. J. Gosian, ITT Geospatial Systems (United States); M. D. Presnar, Rochester Institute of Technology (United States) and Air Force Institute of Technology (United States)</td>
</tr>
</tbody>
</table>

SESSION 3 FUTURE SYSTEMS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
Future VIIRS enhancements for the integrated polar-orbiting environmental satellite system (Invited Paper) [7813-09]
J. J. Puschell, J. Silny, L. Cook, E. Kim, Raytheon Space & Airborne Systems (United States)

Systems approach to developing a climate data record from satellite observations (Invited Paper) [7813-10]
S. E. Broberg, T. S. Pagano, H. H. Aumann, D. A. Elliott, F. O’Callaghan, Jet Propulsion Lab. (United States)

The Hyperspectral Imager for the Coastal Ocean (HICO): fast build for the ISS [7813-24]

The Specular Array Radiometric Calibration (SPARC) method: a new approach for absolute vicarious calibration in the solar reflective spectrum [7813-12]
S. J. Schiller, J. Silny, Raytheon Space & Airborne Systems (United States)

Imaging spectrometer trade studies: a detailed comparison of the Offner-Chrisp and reflective triplet optical design forms [7813-13]
L. G. Cook, J. F. Silny, Raytheon Space & Airborne Systems (United States)

Imagery spatial performance throughput correction methodology [7813-14]
D. T. Fang, J. Puschell, Raytheon Co. (United States)

FMCW lidar for multiple-target sounding [7813-15]
O. Batet, F. Dios, A. Camerón, Univ. Politècnica de Catalunya (Spain)

POSTER SESSION

Design and development of the Laser Retroreflector Array (LRA) for SARAL [7813-16]
V. Costes, K. Gasc, P. Sengenes, C. Salcedo, Ctr. National d’Études Spatiales (France); S. Imperiali, B. Passier, C. Du Jeu, SESO (France); L. Escarrat, Sophia Conseil (France)

Experimental approach for geometrical calibration of small UAV sensors [7813-17]
A. Sergeyev, E. Levin, Michigan Technological Univ. (United States)

Opto-mechanical design of airborne remote sensing instrument [7813-18]
W.-C. Lin, C.-F. Ho, H.-L. Tsay, M.-Y. Hsu, P.-H. Huang, C.-W. Hsu, T.-M. Huang, Instrument Technology Research Ctr. (Taiwan)

A method of autofocus for remote sensing camera [7813-19]
X. Meng, H. Feng, Z. Xu, Q. Li, Y. Chen, Zhejiang Univ. (China)

The Cassegrain Telescope primary mirror isostatic mount design for thermal stress [7813-20]

Intelligent fiber sensing system for the oil field area [7813-22]
W. Sun, DA Qing Oilfield Corp., Ltd. (China); L. Ma, Atphotonics Inc. (United States)
Novel approach for simultaneous measurement of strain and temperature using a single tapered fiber Bragg grating [7813-23]
M. Kondiparthi, Indian Institute of Science (India)

Simultaneous measurement of strain and temperature with a pair of matched fiber Bragg gratings [7813-25]
M. Kondiparthi, S. B.N, Indian Institute of Science (India)

Author Index
Conference Committee

Program Track Chair

Allen H.-L. Huang, University of Wisconsin, Madison (United States)

Conference Chairs

Philip E. Ardanuy, Raytheon Intelligence & Information Systems (United States)
Jeffery J. Puschell, Raytheon Space & Airborne Systems (United States)

Conference Cochair

Hal J. Bloom, Earth Resources Technology, Inc. (United States)
Allen H.-L. Huang, University of Wisconsin, Madison (United States)

Program Committee

Stephen A. Cota, The Aerospace Corporation (United States)
Gerald J. Dittberner, Harris Corporation (United States)
R. Patrick Earhart, Ball Aerospace & Technologies Corporation (United States)
William B. Gail, Microsoft Corporation (United States)
Om P. Gupta, Iridium Satellite LLC (United States)
Wei Min Hao, USDA Forest Service (United States)
Gerard Jansson, Intelsat Global Service Corporation (United States)
Stephen A. Mango, NOAA/NESDIS (United States)
Carl F. Schueler, Orbital Sciences Corporation (United States)

Session Chairs

1 Remote Sensing System Products and Algorithms
 Jeffery J. Puschell, Raytheon Space & Airborne Systems (United States)

2 System Performance Modeling
 Gerald J. Dittberner, Harris Corporation (United States)

3 Future Systems
 Philip E. Ardanuy, Raytheon Intelligence & Information Systems (United States)
Introduction

This volume contains the proceedings for the SPIE conference on Remote Sensing System Engineering III. This conference was held in San Diego, California, 2 August 2010, as part of the Optical Engineering + Applications section of SPIE Optics + Photonics.

As in the previous two conferences in this series, the goals of this conference were to discuss existing and emerging design approaches, engineering methods, tools, and future trends for engineering of remote sensing systems. This topic included:

1. system architecture and design
2. requirements, performance metrics and measures of success
3. modeling and simulation tools and methods
4. design and integration of distributed architectures
5. use of commercial assets in future remote sensing systems
6. end user, effective data/information/system utilization, and optimum return on investment

To achieve these goals, papers were solicited in, but not limited to, the following areas:

- system architecture and design for current and future experimental, research, and operational Earth and space remote sensing programs and experiments
- system engineering metrics and measures of success leading to optimal system design methods and approaches for system requirements identification, definition and allocation for operational programs and experiments
- end-to-end system modeling and simulation methods and tools system engineering approaches for optimizing transition of research systems to operational use
- distributed remote sensing system architectures
- integrated system of systems: engineering approaches and methods
- remote sensors as payloads onboard multifunctional space platforms such as the International Space Station and space satellite communication systems like Intelsat and Iridium NEXT.

A total of 26 papers were presented in five sessions. A highlight of this conference was an interactive workshop on remote sensing systems engineering lessons learned led by program committee member Carl Schueler that provided an opportunity for young engineers and scientists to meet and talk with leading experts in remote sensing system engineering and science.

We enjoyed the participation of a diverse group of international researchers from government, academia, and industry. The range of topics in this conference
continues to grow and included new and future space-based remote sensing systems like HICO, the hyperspectral imager currently onboard the International Space Station, GOES-R, the future US geosynchronous environmental satellite system and VIIRS, the future US polar-orbiting environmental imager along with system approaches for developing climate data records, a new method for absolute vicarious radiometric calibration in the solar reflective spectral region and imager spectrometer trade studies to guide future instrument design.

We thank all of the participants who made this conference successful, especially the cochairs, program committee, and authors.

Jeffery J. Puschell
Philip E. Ardanuy