Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>xiii</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

SESSION 1 KEYNOTE SESSION

7970 03 Nanoimprint lithography for semiconductor devices and future patterning innovation (Keynote Paper) [7970-02]
T. Higashiki, T. Nakasugi, I. Yoneda, Toshiba Corp. (Japan)

SESSION 2 NANOIMPRINT LITHOGRAPHY I: CMOS

7970 05 The comparison of NGLs from a tool vendor's view (Invited Paper) [7970-04]
A. Suzuki, Canon Inc. (Japan)

7970 06 Jet and flash imprint defectivity: assessment and reduction for semiconductor applications [7970-05]
M. Malloy, SEMATECH (United States); L. C. Litt, SEMATECH (United States) and GLOBALFOUNDRIES (United States); S. Johnson, D. J. Resnick, Molecular Imprints, Inc. (United States); D. Lovell, College of Nanoscale Science and Engineering (United States)

7970 07 Defect reduction of high-density full-field patterns in jet and flash imprint lithography [7970-06]
L. Singh, K. Luo, Z. Ye, F. Xu, G. Haase, D. Curran, D. LaBrake, D. Resnick, S. V. Sreenivasan, Molecular Imprints, Inc. (United States)

7970 09 Progress in mask replication using jet and flash imprint lithography [7970-08]

SESSION 3 MASKLESS LITHOGRAPHY I

7970 0B Position accuracy evaluation of multi-column e-beam exposure system [7970-10]
M. Takizawa, H. Komami, M. Kurokawa, A. Yamada, Advantest Corp. (Japan)

7970 0C eMET: 50 keV electron multibeam mask exposure tool [7970-11]
C. Klein, J. Klikovits, H. Loeschner, E. Platzgummer, IMS Nanofabrication AG (Austria)

7970 0D Scanning exposures with a MAPPER multibeam system [7970-12]
C. van den Berg, G. de Boer, S. Boschker, MAPPER Lithography (Netherlands): E. A. Hakkennes, Technolution B.V. (Netherlands); G. Holgate, MAPPER Lithography (Netherlands); M. Hoving, Technolution B.V. (Netherlands); R. Jager, J. J. Koning, V. Kuiper, Y. Ma, I. L. van Mil, H. W. Moak, T. Ooms, T. van de Peut, MAPPER Lithography (Netherlands); S. Postma, DEMCON (Netherlands); M. Sanderse, P. Scheffers, E. Slot, A. Tudorie, A. M. C. Valkering, MAPPER Lithography (Netherlands); N. Venema, Technolution B.V. (Netherlands); N. Vergeer, MAPPER Lithography (Netherlands); A. Weirsma, S. Woutersen, Technolution B.V. (Netherlands); M. J. Wieland, B. J. Kamperbeek, MAPPER Lithography (Netherlands)
SESSION 4 DIRECTED SELF-ASSEMBLY I: SELECTED SEMICONDUCTOR APPLICATIONS: JOINT SESSION WITH CONFERENCE 7972

7970.0E Multi-shaped beam: development status and update on lithography results [7970-13]
M. Slodowski, H.-J. Doering, W. Dorl, I. A. Stolberg, Vistec Electron Beam GmbH (Germany)

SESSION 5 NOVEL APPLICATIONS I

7970.0K Nanoimprint process for 2.5Tb/in² bit patterned media fabricated by self-assembling method [7970-19]

7970.0L High-density patterned media fabrication using jet and flash imprint lithography [7970-20]
Z. Ye, R. Ramos, C. Brooks, L. Simpson, J. Fretwell, S. Carden, P. Hellebrekers, D. LaBrake, D. J. Resnick, S. V. Sreenivasan, Molecular Imprints, Inc. (United States)

SESSION 6 DIRECTED SELF-ASSEMBLY II: PROCESSING AND FUNDAMENTALS

7970.0N Development of realistic potentials for the simulation of directed self-assembly of PS-PMMA di-block copolymers [7970-22]
R. A. Lawson, P. J. Ludovice, C. L. Henderson, Georgia Institute of Technology (United States)

7970.0P Guided self-assembly of block-copolymer for CMOS technology: a comparative study between grapho-epitaxy and surface chemical modification [7970-24]
L. Oria, Microelectronic Institute of Barcelona (Spain); A. Ruiz de Luzuriaga, CIDETEC (Spain); X. Chevalier, CEA-LETI (France); J. A. Alduncin, D. Mecerreyes, CIDETEC (Spain); R. Tiron, S. Gaugiran, CEA-LETI (France); F. Perez-Murano, Microelectronic Institute of Barcelona (Spain)

7970.0Q Study and optimization of the parameters governing the block copolymer self-assembly: toward a future integration in lithographic process [7970-25]
X. Chevalier, CEA-LETI, MINATEC (France) and Lab. de Chimie des Polymères Organiques ENSCPB-IPB (France); R. Tiron, T. Upreti, S. Gaugiran, CEA-LETI, MINATEC (France); C. Navarro, S. Magnet, Arkema S.A. (France); T. Chevolleau, G. Cunge, Lab. des Technologies de la Microélectronique, CNRS, CEA-LETI (France); G. Fleury, G. Hadzioannou, Lab. de Chimie des Polymères Organiques, ENSCPB-IPB (France)

SESSION 7 NANOIMPRINT LITHOGRAPHY II: PROCESSES AND MATERIALS

7970.0S Approaches to rapid resist spreading on dispensing based UV-NIL [7970-27]
K. Usuki, S. Wakamatsu, T. Oomatsu, K. Kodama, K. Kodama, FUJIFILM Corp. (Japan)
Reactive fluorinated surfactant for step and flash imprint lithography [7970-28]
T. Ogawa, The Univ. of Texas at Austin (United States) and Central Glass Co., Ltd. (Japan); D. J. Hellebusch, M. W. Lin, B. M. Jacobsson, W. Bell, C. G. Willson, The Univ. of Texas at Austin (United States)

A new releasing material and continuous nano-imprinting in mold replication for patterned media [7970-29]
K. Suzuki, H. Kobayashi, T. Sato, H. Yamashita, T. Watanabe, HOYA Corp. (Japan)

SESSION 8 MASKLESS LITHOGRAPHY II

Fast mask writers: technology options and considerations (Invited Paper) [7970-32]
L. C. Litt, T. Groves, G. Hughes, SEMATECH (United States)

IMAGINE: an open consortium to boost maskless lithography take off: first assessment results on MAPPER technology [7970-33]
L. Pain, B. Icard, M. Martin, C. Constancias, S. Tedesco, CEA-LETI, MINATEC (France); P. Wiedeman, A. Farah, B. J. Kamperbeek, MAPPER Lithography B.V. (Netherlands); C. Pieczulewski, SOKUDO Co., Ltd. (Japan); H. Kandrashov, Dainippon SCREEN Deutschland GmbH (Germany)

Influence of massively parallel e-beam direct-write pixel size on electron proximity correction [7970-34]
S. J. Lin, P. S. Chen, J. J. Shin, W. C. Wang, B. J. Lin, Taiwan Semiconductor Manufacturing Co., Ltd. (Taiwan)

Data path development for multiple electron beam maskless lithography [7970-35]
F. Krecinic, S. J. Lin, J. J. H. Chen, Taiwan Semiconductor Manufacturing Co. Ltd. (Taiwan)

E-beam to complement optical lithography for 1D layouts [7970-36]
D. K. Lam, E. D. Liu, Multibeam Corp. (United States); M. C. Smayling, Tela Innovations, Inc. (United States); T. Prescop, Multibeam Corp. (United States)

Model-based mask data preparation (MB-MDP) and its impact on resist heating [7970-37]
A. Fujimura, D2S, Inc. (United States); T. Kamikubo, NuFlare Technology, Inc. (Japan); I. Bork, D2S, Inc. (United States)

SESSION 9 Wafer-level fabrication of distributed feedback laser diodes by utilizing UV nanoimprint lithography [7970-39]
M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kouno, K. Hiratsuka, Sumitomo Electric Industries, Ltd. (Japan)

Fabrication of hole pattern for position-controlled MOVPE-grown GaN nanorods with highly precise nanoimprint technology [7970-40]
T. Eriksson, K. D. Lee, B. Heidari, Obducat Technologies AB (Sweden); P. Rode, W. Bergbauer, M. Mandl, C. Köper, M. Strassburg, Osram Opto Semiconductors GmbH (Germany)

Adaptation of roll-to-roll imprint lithography: from flexible electronics to structural templates [7970-41]
E. R. Holland, A. Jeans, P. Mei, C. P. Taussig, R. E. Elder, Hewlett-Packard Co. (United States); C. Bell, E. Howard, J. Stowell, Arizona State Univ. (United States)
SESSION 10 MASKLESS LITHOGRAPHY III

7970 18 New advances with REBL for maskless high-throughput EBDW lithography (Invited Paper) [7970-43]
 P. Petric, C. Bevis, M. McCord, A. Carroll, A. Brodie, U. Ummethala, L. Grella, A. Cheung, R. Freed, KLA-Tencor Corp. (United States)

7970 19 Data preparation solution for e-beam multiple pass exposure: reaching sub-22nm nodes with a tool dedicated to 45 nm [7970-44]
 L. Martin, S. Manakli, S. Bayle, ASELTA Nanographics (France); K.-H. Choi, M. Gutsch, Fraunhofer Ctr. Nanoelectronic Technologies (Germany); J. Pradelles, CEA-LETI, MINATEC (France); J. Bustos, STMicroelectronics (United States)

SESSION 11 NOVEL APPLICATIONS II

7970 1F Nanopatterning of diblock copolymer directed self-assembly lithography with wet development [7970-50]
 M. Muramatsu, M. Iwashita, T. Kitano, T. Toshima, Tokyo Electron Kyushu Ltd. (Japan); Y. Seino, D. Kawamura, M. Kanno, K. Kobayashi, T. Azuma, Toshiba Corp. (Japan)

SESSION 12 CROSS-CUTTING TECHNOLOGIES

7970 1K Tunable two-mirror laser interference lithography system for large-area nano-patterning [7970-54]
 W. Mao, I. Wathuthanthri, C.-H. Choi, Stevens Institute of Technology (United States)

7970 1L Solid-immersion Lloyd’s mirror as a testbed for plasmon-enhanced high-NA lithography [7970-55]
 P. Mehrotra, C. W. Holzwarth, R. J. Blaikie, Univ. of Canterbury (New Zealand)
POSTER SESSION

7970 1M Soft UV-NIL at the 12.5 nm scale [7970-57]
G. Kreindl, M. Kast, D. Treiblmayr, T. Glinsner, EV Group, E. Thallner GmbH (Austria); E. Platzgummer, H. Loeschner, P. Joechl, S. Eder-Kapl, T. Nartz, IMS Nanofabrication AG (Austria); M. Muehlberger, I. Bergmair, M. Boehm, R. Schoeftner, PROFACTOR GmbH (Austria)

7970 1N Scatterometry sensitivity for NIL process [7970-56]
T. Miyakawa, K. Sato, K. Sentoku, H. Ina, Canon Inc. (Japan)

7970 1R Fast and large-field electron-beam exposure by CSEL [7970-61]
A. Kojima, Crestec Corp. (Japan) and Tokyo Univ. of Agriculture and Technology (Japan); T. Ohta, Tokyo Univ. of Agriculture and Technology (Japan); H. Ohyi, Crestec Corp. (Japan); N. Koshida, Tokyo Univ. of Agriculture and Technology (Japan)

7970 1S Optimization of e-beam landing energy for EBDW [7970-63]
E. D. Liu, T. Prescop, Multibeam Corp. (United States)

7970 1T Demonstration of lithography patterns using reflective e-beam direct write [7970-64]
R. Freed, J. Sun, A. Brodie, P. Petric, M. McCord, KLA-Tencor Corp. (United States); K. Ronse, L. Haspeslagh, B. Vereecke, IMEC (Belgium)

7970 1U A lossless circuit layout image compression algorithm for electron beam direct write lithography systems [7970-65]
J. Yang, Univ. of Michigan (United States); S. A. Savari, Texas A&M Univ. (United States)

7970 1V Electron beam induced freezing of positive tone, EUV resists for directed self assembly applications [7970-66]
H.-H. Cheng, I. Keen, A. Yu, Y.-M. Chuang, I. Blakey, K. S. Jack, The Univ. of Queensland (Australia); M. J. Leeson, T. R. Younkin, Intel Corp. (United States); A. K. Whittaker, The Univ. of Queensland (Australia)

Author Index
Conference Committee

Symposium Chairs

Donis G. Flagello, Nikon Research Corporation of America (United States)
Harry J. Levinson, GLOBALFOUNDRIES Inc. (United States)

Conference Chair

Daniel J. C. Herr, Semiconductor Research Corporation (United States)

Conference Cochair

William M. Tong, KLA-Tencor Corporation (United States)

Program Committee

Joy Y. Cheng, IBM Almaden Research Center (United States)
Juan J. de Pablo, University of Wisconsin-Madison (United States)
Elizabeth A. Dobisz, Hitachi Global Storage Technologies, Inc. (United States)
Benjamin G. Eynon, Jr., Molecular Imprints, Inc. (United States)
Timothy R. Groves, University at Albany (United States)
Cynthia Hanson, Space and Naval Warfare Systems Center Pacific (United States)
Tatsuhiko Higashiki, Toshiba Corporation (Japan)
William D. Hinsberg, IBM Almaden Research Center (United States)
Bert Jan Kampherenbeek, MAPPER Lithography (Netherlands)
Ryan J. Kershner, University of Wisconsin-Madison (United States)
Sung-Woo Lee, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)
J. Alexander Liddle, National Institute of Standards and Technology (United States)
Lloyd C. Litt, SEMATECH North (United States) and GLOBALFOUNDRIES Inc. (United States)
Hans Loeschnner, IMS Nanofabrication AG (Austria)
R. Scott Mackay, Petersen Advanced Lithography, Inc. (United States)
Osamu Nagarekawa, HOYA Corporation (Japan)
Laurent Pain, CEA-LETI (France)
Benjamin M. Rathsack, Tokyo Electron America, Inc. (United States)
Douglas J. Resnick, Molecular Imprints, Inc. (United States)
Frank M. Schellenberg, Consultant (United States)
Ines A. Stolberg, Vistec Electron Beam GmbH (Germany)
Kevin T. Turner, University of Wisconsin-Madison (United States)
James J. Watkins, University of Massachusetts Amherst (United States)
Session Chairs

1 Keynote Session
 Daniel J. C. Herr, Semiconductor Research Corporation (United States)
 William M. Tong, KLA-Tencor Corporation (United States)

2 Nanoimprint Lithography I: CMOS
 William M. Tong, KLA-Tencor Corporation (United States)
 Douglas J. Resnick, Molecular Imprints, Inc. (United States)

3 Maskless Lithography I
 Hans Loeschner, IMS Nanofabrication AG (Austria)
 Timothy R. Groves, University at Albany (United States)

4 Directed Self-Assembly I: Selected Semiconductor Applications: Joint Session with Conference 7972
 Elizabeth A. Dobisz, Hitachi Global Storage Technologies, Inc. (United States)
 Daniel P. Sanders, IBM Almaden Research Center (United States)

5 Novel Applications I
 Douglas J. Resnick, Molecular Imprints, Inc. (United States)
 Gregg M. Gallatin, National Institute of Standards and Technology (United States)

6 Directed Self-Assembly II: Processing and Fundamentals
 Matt Malloy, SEMATECH Inc. (United States)
 Joy Y. Cheng, IBM Almaden Research Center (United States)

7 Nanoimprint Lithography II: Processes and Materials
 Elizabeth A. Dobisz, Hitachi Global Storage Technologies, Inc. (United States)
 Douglas J. Resnick, Molecular Imprints, Inc. (United States)

8 Maskless Lithography II
 Lloyd C. Litt, SEMATECH North (United States) and GLOBALFOUNDRIES Inc. (United States)
 Laurent Pain, CEA-LETI (France)

9 Nanoimprint Lithography III: Novel NIL Applications
 Kevin T. Turner, University of Wisconsin-Madison (United States)
 Tatsuhiko Higashiki, Toshiba Corporation (Japan)
10 Maskless Lithography III
Lloyd C. Litt, SEMATECH North (United States) and GLOBALFOUNDRIES Inc. (United States)
Hans Loeschner, IMS Nanofabrication AG (Austria)

11 Novel Applications II
Cynthia Hanson, Space and Naval Warfare Systems Center Pacific (United States)
Kevin T. Turner, University of Wisconsin-Madison (United States)

12 Cross-Cutting Technologies
Daniel J. C. Herr, Semiconductor Research Corporation (United States)
Cynthia Hanson, Space and Naval Warfare Systems Center Pacific (United States)
Introduction

This year’s Alternative Lithographic Technologies III conference built on last year’s momentum and opened to a standing room only audience of more than 420 colleagues. While challenges remain, each NGL appears to be moving forward toward their niche applications. There seems to be growing support for extensible patterning options to leverage the integration of more than one tool exposure tool option, as suggested by Yan Borodovsky. For example, EUV, 193I double patterning, or imprint may be used to define large arrays of regular features that are selectively cut into desired feature shapes by another imaging process, such as maskless patterning.

The community’s sustained support for directed self assembly appears to be gaining traction within the patterning community. Chris Bencher, of AMAT, and Joy Cheng, of IBM, gave a linked pair of talks, which suggested that directed self assembly technology’s demonstrated performance, defectivity and process window adds credibility to DSA’s position as a potential patterning solution option on the ITRS roadmap. The AMAT study reports the first rather rigorous analysis of DSA related defect levels on 300-mm wafers, in a near manufacturing environment. This study found no DSA related defects on the patterned areas considered, which places an upper limit on DSA defectivity at <25 defects/cm². The follow-up IBM presentation suggests that the status of current DSA technology appears to be similar to that of 193I, at a similar phase of its development. The following EE Time article provides an independent perspective on the status of the emerging alternative lithographic technology:

SANTA CLARA, Calif.—Directed self-assembly (DSA)—a technology based on a concept that was virtually unknown outside of research labs a few years ago—has emerged as a legitimate contender for use in future semiconductor manufacturing.

"Directed self-assembly cannot be ignored," said Christopher Bencher, a member of the technical staff at Applied Materials Inc., at the SPIE Advanced Lithography conference here Tuesday (March 1). Bencher further suggested that DSA should be moved from the list of emerging lithography technologies to the "current" technologies list.
At SPIE, Bencher presented data on self-assembly patterning for cells with a half-pitch of less than 15-nm that was collected through a joint project with IBM Research. Bencher noted that while lithographers have been enthusiastic about DSA, the biggest concern has been defect density. Bencher said his project demonstrated the use of DSA to build 12-nm line/space structures across an entire 300-mm wafer with a very low rate of less than 1 percent of "dislocation" defects.

Hundreds of particle defects were also measured during the project, but, according to Bencher, particle defects introduced through the use of DSA are no different than particle defects encountered during the use of any new process technology material and will be reduced through better filtration in the fab. Bencher's project was concerned mainly with dislocation defects because, he said, this is a new type of defect inherent to DSA. "This clearly puts us on a trajectory to make DSA feasible, with fairly good defect control," Bencher said.

In DSA, a block copolymer or polymer blend is deposited on a substrate, usually by spin coating, and subjected to an annealing process that "directs" it to form ordered structures. Researchers say DSA is compatible with conventional 193-nm lithography equipment and would eliminate the need for dual exposure steps.

DSA first landed on the International Technology Roadmap for Semiconductors (ITRS) as a potential solution for leading-edge, critical layer lithography in 2007 and remained part of 2009 ITRS. The technology is also considered complementary to next-generation lithography candidates such as extreme ultraviolet (EUV) lithography and nano-imprint lithography. But even the most enthusiastic supporters of DSA acknowledge that the technology is years away from being used in CMOS production, even in a best case scenario. Defect density is only one of a number of technical hurdles DSA must overcome to be viable in volume production. Yoshi Hishiro, director or R&D at materials supplier JSR Micro Inc., estimated that DSA was at least two to three years away from being used in niche CMOS production.

Attendees at SPIE are nervous about the prospects for EUV, long considered the front runner to replace optical lithography. Intel Corp. hopes to put EUV into production at the 10-nm node, but this week its lithography director said EUV is running late for 10-nm design rule definition. Development of power sources for EUV lithography tools remains behind schedule, and several SPIE attendees expressed concern that EUV was still dealing with "basic physics" issues."
On 2 March, the 2011 Alternative Lithographic Technologies III conference also hosted a panel discussion entitled “Economics of Lithography for Alternative Applications.” Historically, cutting-edge lithography has been tailored to projected IC industry requirements. However, these requirements are diverging from those of other emerging application opportunities, such as in the optics, biotechnology, or even the hard disk areas, which are driven by very different economic models. This panel discussion provided a forum to illuminate this blind spot and clarify the projected patterning requirements for these emerging application spaces.

Have we passed the tipping point for one or more of these emerging patterning technologies? That question may best be answered at next year’s conference, which promises to deliver new breakthroughs in these alternative technologies and their emerging application opportunities.

Daniel J. C. Herr