Contents

SESSION 1 ADVANCED SYSTEMS AND MEASUREMENTS

8037 02 Long range target discrimination using UV fluorescence [8037-01]
M. Bray, J. Lepley, SELEX Galileo Ltd. (United Kingdom)

8037 03 Slant path 1.5 μm range gated imaging close to ground [8037-02]
O. Steinvall, M. Elmqvist, K. Karlsson, O. Gustafsson, T. Chevalier, Swedish Defence Research Agency (Sweden)

8037 05 Characterisation of small targets in a maritime environment by means of laser range profiling [8037-04]
R. Schoemaker, K. Benoist, TNO Defence, Security and Safety (Netherlands)

8037 06 High-resolution hydrographic airborne laser scanner for surveying inland waters and shallow coastal zones [8037-05]
M. Pfennigbauer, A. Ulrich, RIEGL Laser Measurement Systems GmbH (Austria); F. Steinbacher, M. Aufleger, Univ. of Innsbruck (Austria)

8037 07 Underwater laser serial imaging using compressive sensing and digital mirror device [8037-06]
B. Ouyang, F. R. Dalgleish, F. M. Caimi, Florida Atlantic Univ. (United States); T. E. Giddings, J. J. Shirron, Metron Inc. (United States); A. K. Vuorenkoski, G. Nootz, W. Britton, B. Ramos, Florida Atlantic Univ. (United States)

8037 08 High precision, accuracy, and resolution of 3D laser scanner employing pulsed time-of-flight measurement [8037-07]
M. Pfennigbauer, A. Ulrich, RIEGL Laser Measurement Systems GmbH (Austria); J. Pereira da Carmo, European Space Agency (Netherlands)

8037 09 Laser radar in a system perspective [8037-08]
V. Molebny, Academy of Technological Sciences of Ukraine (Ukraine); G. Kamerman, FastMetrix, Inc. (United States); O. Steinvall, Swedish Defence Research Agency (Sweden)

8037 0A Highly sensitive lidar with a thumb-sized sensor-head built using an optical fiber preamplifier [8037-09]
D. Inoue, T. Ichikawa, H. Matsubara, X. Mao, M. Maeda, C. Nagashima, M. Kagami, Toyota Central R&D Labs., Inc. (Japan)

SESSION 2 VISUALIZATION AND DATA ANALYSIS

8037 0B Line-of-sight analysis using voxelized discrete lidar [8037-10]
S. Hagstrom, D. Messinger, Rochester Institute of Technology (United States)
Extracting intelligence from ladar sensing modalities [8037-11]
A. M. Burwinkel, S. J. Shelley, Etegent Technologies, Ltd. (United States); C. M. Ajose, Air Force Research Lab. (United States)

Automatic merging of lidar point-clouds using data from low-cost GPS/IMU systems [8037-12]
S. E. Budge, Utah State Univ. (United States); K. von Niederhausern, Ball Aerospace & Technologies Corp. (United States)

Terrain classification of ladar data for bare earth determination [8037-13]
A. L. Neuenschwander, L. A. Magruder, The Univ. of Texas at Austin (United States)

Automated method for detection and quantification of building damage and debris using post-disaster lidar data [8037-14]
R. C. Labiak, Rochester Institute of Technology (United States) and Air Force Institute of Technology (United States); J. A. N. van Aardt, D. Bespalov, D. Eychner, E. Wirch, H.-P. Bischof, Rochester Institute of Technology (United States)

Lidar depth image compression using clustering, re-indexing, and JPEG2000 [8037-15]
D. Karpmann, Univ. of Missouri-Columbia (United States); D. Ashbrook, Eastern Illinois Univ. (United States); X. Li, Y. Duan, W. Zeng, Univ. of Missouri-Columbia (United States)

Rapid high-fidelity visualisation of multispectral 3D mapping [8037-16]
P. M. Tudor, M. Christy, General Dynamics UK Ltd. (United Kingdom)

Quantitative data quality metrics for 3D laser radar systems [8037-18]
J. R. Stevens, N. A. Lopez, R. R. Burton, National Geospatial-Intelligence Agency (United States)

Sensitivity of the polarization ratio method to aerosol concentration [8037-19]
M. G. Snyder, North Carolina State Univ. (United States); A. M. Brown, The Johns Hopkins Univ. (United States); C. R. Philbrick, North Carolina State Univ. (United States)

Pseudorandom noise code-based technique for cloud and aerosol discrimination applications [8037-20]
J. Campbell, N. S. Prasad, M. Flood, M. Flood, W. Harrison, NASA Langley Research Ctr. (United States)

Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser [8037-22]

Drogue tracking using 3D flash lidar for autonomous aerial refueling [8037-36]
C.-I. Chen, R. Stettner, Advanced Scientific Concepts, Inc. (United States)
Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection [8037-25]
M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, H. Verdun, Fibertek, Inc. (United States)

Piston phase determination and its effect on multi-aperture image resolution recovery [8037-28]
J. Kraczek, N. J. Miller, P. McManamon, J. W. Haus, Univ. of Dayton (United States); J. Marron, Lockheed Martin Coherent Technologies (United States)

Coherent laser radar efficiency and power variance with Gaussian pointing errors [8037-30]
P. Gatt, S. M. Shald, Lockheed Martin Coherent Technologies (United States)

Green laser vibrometry based on single-frequency monolithic microchip laser [8037-31]
A. J. Antończak, P. E. Kozioł, J. Z. Sotor, K. M. Abramski, Wroclaw Univ. of Technology (Poland)

Multichannel flexible fiber vibrometer [8037-32]
A. Waz, P. Kaczmarek, A. Antonczak, J. Sotor, G. Dudzik, K. Krzempek, G. Sobon, K. M. Abramski, Wroclaw Univ. of Technology (Poland)

Airborne laser vibrometer for seismic subsurface inspection [8037-33]
A. D. McAulay, Lehigh Univ. (United States)

Topographic mapping flash lidar for multiple scattering, terrain, and forest mapping [8037-35]
T. Ramond, E. Saiki, C. Weimer, J. Applegate, Ball Aerospace & Technologies Corp. (United States); Y. Hu, NASA Langley Research Ctr. (United States); T. Delker, L. Ruppert, B. Donley, Ball Aerospace & Technologies Corp. (United States)

Geiger-mode ladar cameras [8037-38]
P. Yuan, R. Sudharsanan, X. Bai, J. Boisvert, P. McDonald, E. Labios, Spectrolab, Inc. (United States); B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, Boeing DES (United States); S. Van Duyne, G. Pauls, S. Gaalema, Black Forest Engineering, LLC (United States)

Linear-mode avalanche photo-diode detectors with a quasi-deterministic gain component: statistical model studies [8037-42]
D. G. Youmans, Cobham Analytic Solutions (United States); G. Williams, A. Huntington, Voxtel, Inc. (United States)
GHz low noise short wavelength infrared (SWIR) photoreceivers [8037-43]
X. Bai, P. Yuan, P. McDonald, J. Boisvert, J. Chang, R. Woo, E. Labios, R. Sudharsanan, Boeing Spectrolab, Inc. (United States); M. Krainak, G. Yang, X. Sun, W. Lu, NASA Goddard Space Flight Ctr. (United States); D. McIntosh, Q. Zhou, J. Campbell, Univ. of Virginia (United States)

SESSION 9 NOVEL APPLICATIONS

Lidar characteristics for detecting and tracking high-speed bullets [8037-44]

SESSION 10 LASERS AND TRANSMITTER TECHNOLOGY

A 243mJ eye-safe injection-seeded KTA ring-cavity optical parametric oscillator [8037-46]
R. J. Foltynowicz, M. D. Wojcik, Space Dynamics Lab. (United States)

High-power diode-pumped Er3+:YAG single-crystal fiber laser [8037-47]
I. Martial, Lab. Charles Fabry, CNRS, Univ. Paris-Sud (France) and Fibercryst SAS (France); J. Didierjean, N. Aubry, Fibercryst SAS (France); F. Balembois, P. Georges, Lab. Charles Fabry, CNRS, Univ. Paris-Sud (France)

Field tests of laser ranging using PRBS modulation techniques [8037-48]
J. Kovalik, K. Wilson, M. Wright, W. Williamson, Jet Propulsion Lab. (United States)

SESSION 11 AUTONOMOUS VEHICLE SENSORS

Virtual navigation of interior structures by lidar [8037-51]
Y. Xi, X. Li, Y. Duan, Univ. of Missouri-Columbia (United States); N. Maerz, Missouri Univ. of Science and Technology (United States)

Spectral lidar as a UGV navigation sensor [8037-52]
M. A. Powers, General Dynamics (United States); C. C. Davis, Univ. of Maryland, College Park (United States)

Brassboard development of a MEMS-scanned lidar sensor for small ground robots [8037-53]
B. L. Stann, J. F. Dammann, U.S. Army Research Lab. (United States); J. A. Enke, General Dynamics Robotic Systems (United States); P.-S. Jian, Aerotek, Inc. (United States); M. M. Giza, W. B. Lawler, U.S. Army Research Lab. (United States); M. A. Powers, General Dynamics Robotic Systems (United States)

Compact 3D lidar based on optically coupled horizontal and vertical scanning mechanism for the autonomous navigation of robots [8037-54]
M.-G. Lee, S.-H. Baeg, Korea Institute of Industrial Technology (Korea, Republic of); K.-M. Lee, H.-S. Lee, LG Innotek Co., Ltd. (Korea, Republic of); M.-H. Baeg, Korea Institute of Industrial Technology (Korea, Republic of); J.-O. Park, Hyundai Rotem Co. (Korea, Republic of); H.-K. Kim, Samsung Electro-Mechanics Co., Ltd. (Korea, Republic of)
POSTER SESSION

8037 1I Feasibility study to determine correct focus by analyzing photon distributions on Geiger-mode avalanche photodiode focal plane array [8037-55]
T. H. Kim, H. J. Kong, S. E. Jo, Korea Advanced Institute of Science and Technology (Korea, Republic of); M. S. Oh, Korea Advanced Institute of Science and Technology (Korea, Republic of) and Samsung Electronics Co. (Korea, Republic of)

8037 1J Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents [8037-56]

8037 1K Simulated lidar waveforms for understanding factors affecting waveform shape [8037-49]
A. M. Kim, R. C. Olsen, Naval Postgraduate School (United States)

Author Index
Conference Committee

Symposium Chair

William Jeffrey, HRL Laboratories, LLC (United States)

Symposium Cochair

Kevin P. Meiners, Office of the Secretary of Defense (United States)

Conference Chairs

Monte D. Turner, Defense Advanced Research Projects Agency (United States)
Gary W. Kamerman, FastMetrix, Inc. (United States)

Program Committee

Philip Gatt, Lockheed Martin Coherent Technologies (United States)
Vasyl V. Molebny, National Taras Shevchenko University of Kyiv (Ukraine)
Russell Philbrick, North Carolina State University (United States)
Upendra N. Singh, NASA Langley Research Center (United States)
Ove Steinvall, Swedish Defence Research Agency (Sweden)

Session Chairs

1 Advanced Systems and Measurements
Monte D. Turner, Defense Advanced Research Projects Agency (United States)

2 Visualization and Data Analysis
Ove Steinvall, Swedish Defence Research Agency (Sweden)

3 Laser Remote Sensing
Philip Gatt, Lockheed Martin Coherent Technologies (United States)

4 Coherent Systems I
C. Russell Philbrick, North Carolina State University (United States)

5 Coherent Systems II
C. Russell Philbrick, North Carolina State University (United States)

6 Laser Doppler Vibrometry
Vasyl V. Molebny, National Taras Shevchenko University of Kyiv (Ukraine)
<table>
<thead>
<tr>
<th>7</th>
<th>Staring Array Lidar</th>
<th>Vasyl V. Molebny, National Taras Shevchenko University of Kyiv (Ukraine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Detectors and Receiver Technology</td>
<td>Gary W. Kamerman, FastMetrix, Inc. (United States)</td>
</tr>
<tr>
<td>9</td>
<td>Novel Applications</td>
<td>Gary W. Kamerman, FastMetrix, Inc. (United States)</td>
</tr>
<tr>
<td>10</td>
<td>Lasers and Transmitter Technology</td>
<td>Upendra N. Singh, NASA Langley Research Center (United States)</td>
</tr>
<tr>
<td>11</td>
<td>Autonomous Vehicle Sensors</td>
<td>Gary W. Kamerman, FastMetrix, Inc. (United States)</td>
</tr>
</tbody>
</table>