Front Matter: Volume 9655
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9781628418651

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2015, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/15/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

• The first four digits correspond to the SPIE volume number.
• The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
TOPIC 1 PHYSICAL SENSING

<table>
<thead>
<tr>
<th>Proc. of SPIE Vol. 9655 965501-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9655 02 Multi-channel optical gap sensor based on spectrally resolved interferometry [9655-44]</td>
</tr>
<tr>
<td>9655 03 Imaging spectrophotometer for 2D spatially resolved measurements of spectral reflectance of materials [9655-53]</td>
</tr>
<tr>
<td>9655 04 Distributed feedback fiber laser for sub-nanostrain-resolution static strain measurement by use of swept beat-frequency demodulation [9655-56]</td>
</tr>
<tr>
<td>9655 05 Performance of closed-loop resonant micro-optic gyro with hybrid digital phase modulation [9655-69]</td>
</tr>
<tr>
<td>9655 06 Polarimetric fiber vibration sensor based on polarization-diversity loop structure [9655-74]</td>
</tr>
<tr>
<td>9655 07 Fiber optic Doppler velocimeter based on a dual-polarization fiber grating laser [9655-100]</td>
</tr>
<tr>
<td>9655 08 Optical fiber temperature sensor with mK resolution and absolute frequency reference [9655-106]</td>
</tr>
<tr>
<td>9655 09 Feature regulation and applications of M-FBG by laser ablation [9655-110]</td>
</tr>
<tr>
<td>9655 0A High-sensitivity strain sensors based on in-fiber reshaped air bubbles [9655-122]</td>
</tr>
<tr>
<td>9655 0B A dual channel method for simultaneous evaluation in two branches of a multi-functional integrated optic chip [9655-123]</td>
</tr>
<tr>
<td>9655 0C Optimized Phase Generated Carrier (PGC) demodulation algorithm insensitive to C value [9655-126]</td>
</tr>
<tr>
<td>9655 0D Sagnac interferometer based stable phase demodulation system for diaphragm based acoustic sensor [9655-129]</td>
</tr>
<tr>
<td>9655 0E Single layered flexible photo-detector based on perylene/graphene composite through printed technology [9655-137]</td>
</tr>
<tr>
<td>9655 0F Stretchable photo sensor based on graphene/perylene composite utilizing electrohydrodynamic fabrication technique [9655-140]</td>
</tr>
<tr>
<td>9655 0G</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>9655 0H</td>
</tr>
<tr>
<td>9655 0I</td>
</tr>
<tr>
<td>9655 0J</td>
</tr>
<tr>
<td>9655 0K</td>
</tr>
<tr>
<td>9655 0L</td>
</tr>
<tr>
<td>9655 0M</td>
</tr>
<tr>
<td>9655 0N</td>
</tr>
<tr>
<td>9655 0O</td>
</tr>
<tr>
<td>9655 0P</td>
</tr>
<tr>
<td>9655 0Q</td>
</tr>
<tr>
<td>9655 0R</td>
</tr>
<tr>
<td>9655 0S</td>
</tr>
<tr>
<td>9655 0T</td>
</tr>
<tr>
<td>9655 0U</td>
</tr>
<tr>
<td>9655 0V</td>
</tr>
<tr>
<td>9655 0W</td>
</tr>
<tr>
<td>9655 0X</td>
</tr>
<tr>
<td>Topic 2</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>9655 0Y</td>
</tr>
<tr>
<td>9655 0Z</td>
</tr>
<tr>
<td>9655 10</td>
</tr>
<tr>
<td>9655 11</td>
</tr>
<tr>
<td>9655 12</td>
</tr>
<tr>
<td>9655 13</td>
</tr>
<tr>
<td>9655 14</td>
</tr>
<tr>
<td>9655 15</td>
</tr>
<tr>
<td>9655 16</td>
</tr>
<tr>
<td>9655 17</td>
</tr>
<tr>
<td>9655 18</td>
</tr>
<tr>
<td>9655 19</td>
</tr>
<tr>
<td>9655 1A</td>
</tr>
<tr>
<td>9655 1B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 3</th>
<th>Biological/Biomedical Sensing and Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>9655 1C</td>
<td>A novel single fiber optical tweezers based on light-induced thermal effect [9655-23]</td>
</tr>
<tr>
<td>9655 1D</td>
<td>A mode-division-multiplexing single fiber optical tweezers [9655-25]</td>
</tr>
<tr>
<td>9655 1E</td>
<td>Polymer fiber Bragg grating force sensors for minimally invasive surgical devices [9655-67]</td>
</tr>
<tr>
<td>Topic 4</td>
<td>Integrated Technologies for Sensing</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>9655 1F</td>
<td>In situ and ultrasensitive DNA detection based on a graphene-coated silica fiber taper interferometer [9655-88]</td>
</tr>
<tr>
<td>9655 1G</td>
<td>Terahertz spectral characteristics of biological tissues [9655-132]</td>
</tr>
<tr>
<td>9655 1H</td>
<td>Fabrication and characterization of V-groove liquid core waveguide [9655-153]</td>
</tr>
<tr>
<td>9655 1I</td>
<td>Highly sensitive terahertz sensor for glucose detection [9655-156]</td>
</tr>
<tr>
<td>9655 1J</td>
<td>Accurate and in situ monitoring of bacterial concentration using a real time all-fibre spectroscopic device [9655-158]</td>
</tr>
<tr>
<td>9655 1K</td>
<td>Optical fiber sensing of human skin emanations [9655-179]</td>
</tr>
<tr>
<td>9655 1M</td>
<td>Holographic 3D fluorescence microscopy (Invited Paper) [9655-235]</td>
</tr>
<tr>
<td>9655 1N</td>
<td>Orthodontic mechanics using mini-implant measured by FBG [9655-237]</td>
</tr>
<tr>
<td>9655 1O</td>
<td>A single-shot 2D/3D simultaneous imaging microscope based on light field microscopy [9655-262]</td>
</tr>
<tr>
<td>9655 1P</td>
<td>Biomedical sensing and imaging for the anterior segment of the eye (Invited Paper) [9655-296]</td>
</tr>
<tr>
<td>9655 1Q</td>
<td>Surface plasmon scattering: an alternative approach for optical fibers biosensors (Invited Paper) [9655-303]</td>
</tr>
<tr>
<td>9655 1R</td>
<td>Polarization-sensitive plasmonic hot spot tuning with nanoslit arrays [9655-37]</td>
</tr>
<tr>
<td>9655 1S</td>
<td>Quantum opto-mechanical coupling model for fiber micro-cantilever beam damping noise reduction [9655-48]</td>
</tr>
<tr>
<td>9655 1T</td>
<td>A novel twin-core fiber connector [9655-51]</td>
</tr>
<tr>
<td>9655 1U</td>
<td>Side polished twin-core fiber coupler [9655-57]</td>
</tr>
<tr>
<td>9655 1V</td>
<td>Twin-core fiber end polish technique for particle trapping [9655-61]</td>
</tr>
<tr>
<td>9655 1W</td>
<td>Ultra-sensitive temperature sensor based on liquid crystal infiltrated photonic crystal fibers [9655-94]</td>
</tr>
<tr>
<td>9655 1X</td>
<td>All-fiber Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores and its sensing applications [9655-115]</td>
</tr>
<tr>
<td>9655 1Y</td>
<td>Thermo-optically tunable switching in an electro-microtube ring resonator [9655-135]</td>
</tr>
<tr>
<td>9655 1Z</td>
<td>Absorption and fluorescence spectroscopy on a smartphone [9655-147]</td>
</tr>
</tbody>
</table>
Grating decoupler of channel plasmon polariton waveguide for optical integrated circuit application [9655-164]

High performance refractive index sensing in multimode plasmonic waveguide [9655-165]

Study on the strain characteristic of fiber optic flexural disk accelerometer [9655-175]

Single-shot, long-range, and zoomable optical tomography and profilometry using a diffraction grating and a CCD camera [9655-188]

Modal analysis of rotating plate using tracking laser Doppler vibrometer: algorithm modification [9655-209]

Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera [9655-216]

Linear polarization sensor with modified Shack-Hartmann wave-front sensor [9655-266]

Microbubble resonators as enhancement platforms for linear and nonlinear applications (Invited Paper) [9655-298]

TOPIC 5 SPECIALTY OPTICAL FIBERS FOR SENSING

Design of a high-birefringence two-core photonic crystal fiber for simultaneous measurement of pressure and temperature [9655-8]

Simplified correlation-domain Brillouin sensor using plastic optical fiber [9655-10]

Strain characteristics of selectively infiltrated photonic crystal fibers [9655-22]

Supercontinuum generation through DNA-filled hollow core fiber for broadband absorption spectroscopy [9655-45]

Building a lab-in/on-fiber (Invited Paper) [9655-47]

Heterodyning fiber laser based magnetic field sensor using magnetostrictive composite material [9655-78]

Preparation of ytterbium-doped silica optical fiber using MCVD process with chelate precursor [9655-91]

Excitation characteristics of seven-core fiber in splicing process [9655-104]

Temperature sensitivity of the inline interferometer based on a two-core photonic crystal fiber selectively filled with polymer [9655-117]

A high-sensitivity chemical sensor based on titania coated optical-fiber long period grating for ammonia sensing in water [9655-120]

Modal-interference-based temperature sensing using plastic optical fibers: markedly enhanced sensitivity near glass-transition temperature [9655-159]
Sensing nanometric displacement of a micro-/nano-fiber induced by optical forces by use of white light interferometry [9655-162]

Performance evaluation of an ultra-thin fiber optic dosimeter using therapeutic photon beams [9655-163]

A fiber optic spectrometer produced by a femtosecond 400-nm second harmonic Ti:sapphire laser [9655-194]

Self Q-switching of a bismuth doped silica fiber operating at 1.46 μm [9655-248]

A microdroplet-etched fiber Fabry-Perot resonator for the refractive index sensing [9655-249]

Improvement of radiation resistance of Er-doped photonic crystal fiber source by spectrum trimming [9655-250]

Sensing characteristics of all-solid photonic bandgap fiber modal interferometers [9655-252]

Design for an ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order Surface Plasmon Polariton mode [9655-256]

Sensing characteristics of Brillouin scattering spectra in a micro-scaled silica fiber [9655-285]

Optical Bragg grating sensor fibers for ultra-high temperature applications (Invited Paper) [9655-297]

Regenerated long period gratings (LPGs) in boron-codoped germanosilicate optical fibre [9655-111]

The characteristic of gap FBG and its application [9655-34]

Sensitive strain sensor based on regenerated microfiber Bragg grating for high temperature environment [9655-39]

Pattern matching based smart interrogation algorithm for fiber Bragg gratings inscribed by femtosecond laser [9655-65]

Beat frequency dependence of the sensitivity for Faraday-rotation based heterodyning fiber laser magnetic field sensor [9655-89]

Noise performance improvement of dual-polarization fiber grating laser through external optical feedback [9655-101]

Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber [9655-109]
9655 30 Theoretical and experimental study on crosstalk caused by multiple reflections in identical weak fiber Bragg grating array [9655-113]

9655 31 Planar waveguide Michelson interferometer fabricated by using 157nm mask laser micromachining [9655-124]

9655 32 Tunable plasmonic characteristics at asymmetric double metal caps on a dielectric nanosphere [9655-154]

9655 33 Chirality measurements using optical fibre long period gratings fabricated in high birefringent fibre [9655-205]

9655 35 Long period grating sensors response to photosensitive bacteriorhodopsin coating [9655-218]

9655 36 Novel two-dimensional single-shot optical imaging system by VIPA-comb interferometry [9655-240]

9655 37 Temperature and strain measurement by using cascaded chirped long period fiber gratings [9655-251]

9655 38 High-resolution compact dual-frequency fiber laser accelerometer [9655-253]

9655 39 Combining regenerated gratings and optical fibre Fabry-Pérot cavities for dual sensing of ultra-high temperature and strain [9655-278]

TOPIC 7 NOVEL MATERIALS FOR SENSING

9655 3A Metal ion sensing solution containing double crossover DNA [9655-160]

9655 3B Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber [9655-169]

9655 3C Study on the electrical control of graphene with single-stranded DNA [9655-272]

9655 3D Measurement of mechanoluminescence radiance of ZnS:Mn [9655-279]

9655 3E Fabrication of printed ITO sensor for the ammonia hydroxide detection [9655-354]

9655 3F Recent advances on optical reflectometry for access network diagnostics and distributed sensing [9655-398]

TOPIC 8 DISTRIBUTED, MULTIPLEXED AND NETWORKED SENSING

9655 3G Multi optical path generator for fiber optic strain sensors multiplexing [9655-55]

9655 3I Utilization of negative beat-frequencies for maximizing the update-rate of OFDR [9655-82]
9655 3J High resolution optical time-domain reflectometry based on correlation utilizing an all-fiber chaotic source [9655-105]

9655 3K Spectrum zooming in network topology based on a white light fiber optic Mach-Zehnder interferometer [9655-145]

9655 3L Brillouin optical correlation domain reflectometry with lock-in detection scheme (Invited Paper) [9655-161]

9655 3M A comparative study for massive data compression in long-distance distributed optical fiber sensing systems [9655-204]

9655 3N Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings [9655-231]

9655 3P A novel optical coherent domain reflectometer with dual frequency modulation [9655-275]

TOPIC 9 ENVIRONMENTAL AND STRUCTURAL MONITORING

9655 3R High performance fiber optic sensor based on self referenced FBGs and high-speed dual-wavelength pulse coding [9655-81]

9655 3S Fe(C)-coated optical fiber sensors for corrosion alarm monitoring [9655-128]

9655 3T Fiber optic ultrasonic sensing systems using PS-FBG for damage monitoring in composite materials (Invited Paper) [9655-174]

9655 3U Multi-scale wavelet decomposition and its application in distributed optical fiber fences [9655-176]

9655 3V A fiber optic epoxy cure monitoring technique by using a wavelength-swept laser [9655-208]

9655 3W Ultrahigh-sensitivity temperature sensor based on in-fiber Fabry-Perot interferometer [9655-217]

9655 3X Temperature and strain dependence of the Brillouin frequencies in tapered optical fiber [9655-270]

9655 3Y Safety monitoring of the FBG sensor in respect of radioactivity and deformation measurement of a silo structure for radioactive waste disposal [9655-283]

9655 3Z Design and performance analysis of front end optical instrument for coastal water remote sensing [9655-287]

TOPIC 10 INDUSTRIAL APPLICATIONS, FIELD TRIALS AND STANDARDIZATION

9655 40 Whole optic fiber weighing technique and device of belt conveyor [9655-7]
Two-phase flow measurement based on oblique laser scattering [9655-80]

Comparisons between co-axial and bi-axial optical systems for time-of-flight based laser scanners [9655-168]

A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system [9655-246]

Multilayered film monitoring using terahertz reflective time-domain spectroscopy [9655-290]

New trends and applications of optical fiber sensing technologies at the NEL-FOST [9655-394]

POST-DEADLINE PAPERS

In-fiber whispering gallery mode resonator fabricated by femtosecond laser micromachining [9655-400]

High performance distributed acoustic sensor using cyclic pulse coding in a direct detection coherent-OTDR [9655-399]

Long-range and high-resolution correlation optical time-domain reflectometry utilizing an all optical chaotic source [9655-401]

A tunable and switchable wavelength spacing of multi-wavelength erbium doped fiber laser by exploiting nonlinear polarization rotation [9655-402]
Authors

Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aharoni, Abraham, 3D
Ali, Shawkat, 0E, 0F
Ast, Sandra, 11, 12
Bae, Jinho, 0E, 0F
Baker, Chams, 0Q
Baldi, Massimo, 0P
Banh, Q. T., 23
Bao, Hailong, 31
Bao, Xiaoyi, 0Q
Bartelt, Hartmut, 2S
Bergman, A., 0V
Berneschi, Simone, 27
Bogdanowicz, Robert, 19
Botsev, Yakov, 3I
Callaghan, Dean, 1E
Canning, John, 0S, 11, 1Z, 2T, 39
Cao, Beibei, 2E
Chang, Jiho, 3E
Chen, Gongdai, 1T, 2F
Chen, J., 08
Chen, Liang, 0J
Chen, Su, 2E
Chen, Xue, 0M
Cheng, Cheng, 13
Cheng, Linghao, 07, 2D, 2X, 2Y, 38
Cheng, M., 1J
Cho, Seong-Kyu, 3Y
Cho, Youngho, 2B, 3A
Choi, Jaebin, 1A, 1B, 3C
Choi, Jindoo, 44
Choi, Jong-Kuk, 3Z
Choi, Sang-Jin, 0H
Chu, Cheng-Shane, 0Y
Chu, Su-Wei, 0Y
Chung, Youngchul, 11
Chung, Youngjoo, 1X, 2G
Churkin, D. V., 3J, 48
Ciacccheri, Leonardo, 0P
Clark, David C., 1M
Cook, Kevin, 11, 1Z, 2T, 39
Dai, Jixiang, 13
Dai, Yutong, 09
da Silva, Marco J., 0T, 41
Deng, Ming, 14, 1Y, 46
de Oliveira, Walmir, 1N
Ding, Liyun, 45
Ding, Mingfei, 1F
Di Pasquale, Fabrizio, 3R, 47
Dong, Huazhuo, 2J
Du, Chenlin, 0M
Du, Jiangbing, 0B, 3F, 3P
Dugasan, Sreekantha Reddy, 3A
Dutra, Guilherme, 0S, 0T
Etsmann, Tino, 2S
Eom, Tae Joong, 1P
Eyal, Avishay, 3I
Fan, M. Q., 3J, 48
Fan, Xinyu, 0B, 3F, 3P
Faralli, Stefano, 47
Farnesi, Daniele, 27
Farrell, Gerald, 1E
Feng, Zi-Wei, 2B
Ferhati, Mokhtar, 3K
Ficek, Mateusz, 19
Fierek, Piotr, 0R
Fischer, Robert, 41
François, A., 1Q
Gabai, Haniel, 3I
Gao, Min, 3S
Gao, Shuai, 2V
Gao, Shuai, 2V
Gnyba, Marko, 1N
Gong, Yuan, 39
Goya, K., 2L
Guan, Bai-Ou, 07, 10, 1F, 2B, 2D, 2N, 2P, 2R, 2V, 2X, 2Y, 38
Guan, Chunying, 2F, 22
Guariza Filho, Odilon, 1N
Guo, Donglai, 3S
Guo, Huifeng, 30
Habisreuther, Tobias, 2S
Hahami, Meir, 3I
Han, Ya, 2Q
Hayashi, Nisei, 29, 2I
He, Jun, 1W, 2W, 3W
He, Wei, 2D
He, Zuyuan, 0B, 3F, 3P
Hoffmann, P., 1Q
Hosoki, Ai, 15
Hossain, Md. Arafat, 11, 1Z
Hosseinzadeh Kassani, Sahar, 12, 1H
Hotate, Kazuo, 3L
Hou, Lu, 0B, 22
Hu, Jun, 2U
Hu, Nengpeng, 2X
Hu, Pan, 0J
Hu, Peng, 2E
Hu, Qifan, 49
Hu, Wenbin, 3S
Huang, Chujia, 45
Huang, Dongmei, 46
Huang, Hankai, 2J
Huang, Jun, 09
Huang, Quandong, 0M
Huang, Wei, 46
Huang, Wenzhu, 04, 0W
Huang, Yu, 2D, 2N, 2V, 38
Huang, Yuan, 31
Huang, Zhao-feng, 1G
Jiang, Desheng, 30
Jiang, Yuan, 31
Jiang, Youngmin, 1A, 1B, 3A
Jiang, Youngmo, 1A, 1B, 3C
Kalinowski, Hypolito J., 1N
Kang, Hwi, 26
Kang, Hyeon-Ha, 0H
Kang, Hyoung-Ki, 1I
Kang, Hyoung-Min, 2B
Kang, Hyunjin, 0L, 0N, 3V
Kang, J. S., 2K
Kang, J., 2K
Kang, Jae Hun, 1A, 1B, 2B, 3A, 3C
Kang, Jonghyun, 1M, 1O
Kang, Joonsoo, 21
Kang, Junsup, 0K
Kang, Ki-Soo, 3Y
Kang, Kyuho, 1R
Kang, Kyung-Soo, 44
Kang, Sang Kyung, 1B
Kang, Sang-Whan, 3Z
Kang, Seung-Whan, 22
Kang, Yong Hyun, 3N
Kang, Young June, 1A, 3C
Kang, Young Suk, 06
Kang, Youngmin, 1O
Kan, Masato, 3L
Kano, Jun-ju, 1Q
Kanno, H., 2K
Kanno, Y., 03
Kano, Y., 04
Kano, Y., 05
Kaprosh, S., 18, 1K, 2H, 33, 35
Kasai, T., 23
Kawamura, Yuya, 0O, 25
Kawamura, Zeyuan, 07
Kwon, G., 2K
Kwon, Hyounghun, 20
Kwon, Won Sik, 44
Langer, T., 0V
Lao, Yiqin, 2Y
Lee, B., 2K
Lee, Byoungho, 1M, 1O, 1R, 20, 21, 26, 32
Lee, Chong Hyun, 0E, 0F
Lee, Dong-Hoon, 03
Lee, Dong-Kyu, 16, 1I
Lee, Dong-Soo, 11, 1I
Lee, Dong-Taek, 1R
Lee, Ji Eun, 1B
Lee, Kwanil, 2B, 2M, 3X
Lee, Moonjin, 3E
Lee, Sang Ho, 03
Lee, Sang Bae, 2M, 3X
Lee, Sang-Gyu, 1A, 1B, 1I, 2B, 3A, 3C
Lee, Seok, 1A, 1B, 1I, 2B, 3A, 3C
Lee, Seok-hwan, 3E
Lee, Seok-Soo, 1R, 21
Lee, Taekjin, 1A, 1B, 2B, 3A, 3C
Lee, Yohan, 26
Lee, Yong-Wook, 06
Lee, Yong-Eun, 1P
Li, Chuang, 0B, 22
Li, Fang, 04, 0W
Li, Feng, 0W
Li, Chuang, 0B, 22
Li, Fang, 04, 0W
Li, Feng, 0W
Conference Committee

Conference Chairs

Byoungho Lee, Seoul National University (Korea, Republic of)
Sang Bae Lee, Korea Institute of Science and Technology (Korea, Republic of)
Yunjiang Rao, University of Electronic Science and Technology of China (China)

Organizing Committee Members

Jinho Bae, Jeju National University (Korea, Republic of)
Young-Geun Han, Hanyang University (Korea, Republic of)
Min Yong Jeon, Chungnam National University (Korea, Republic of)
Jaehoon Jung, Dankook University (Korea, Republic of)
Chang-Seok Kim, Pusan National University (Korea, Republic of)
Donghyun Kim, Yonsei University (Korea, Republic of)
Jeehyun Kim, Kyungpook National University (Korea, Republic of)
Yong Wook Lee, Pukyong National University (Korea, Republic of)
Kyunghwan Oh, Yonsei University (Korea, Republic of)
Kwang Yong Song, Chung-Ang University (Korea, Republic of)
Minho Song, Chonbuk National University (Korea, Republic of)

Technical Program Committee Chairs

Youngjoo Chung, Gwangju Institute of Science and Technology, (Korea, Republic of)
Wei Jin, The Hong Kong Polytechnic University (Hong Kong, China)
Seok Lee, Korea Institute of Science and Technology (Korea, Republic of)
Kentaro Nakamura, Tokyo Institute of Technology (Japan)

Technical Program Committee Members

Jacques Albert, Carleton University (Canada)
Kevin Chen, Pittsburgh University (United States)
Zhe Chen, Jinan University (China)
Kin Seng Chiang, City University of Hong Kong (Hong Kong, China)
Kevin Cook, The University of Sydney (Australia)
Fabrizio Di Pasquale, Scuola Superiore Sant'Anna (Italy)
Xinyong Dong, China Jiliang University (China)
Wolfgang Ecke, Institute of Photonics (Germany)
Yasufumi Enami, Hiroshima University (Japan)
Jayantha Epaarachchi, University of Southern Queensland (Australia)
Brant Gibson, University of Melbourne (Australia)
Xuping Zhang, Nanjing University (China)
Tao Zhu, Chongqing University (China)

International Steering Committee Members

Xiaoyi Bao, University of Ottawa (Canada)
Hartmut Bartelt, Institute of Photonics (Germany)
Arthur Braga, Pontificia Universidade Catolica do Rio de Janeiro (Brazil)
John Canning, The University of Sydney (Australia)
Andrea Cusano, Universita degli Studi del Sannio (Italy)
Bai-Ou Guan, Jinan University (China)
Kazuo Hotate, The University of Tokyo (Japan)
Wei Jin, The Hong Kong Polytechnic University (Hong Kong, China)
Byoung Yoon Kim, Korea Advanced Institute of Science and Technology (Korea, Republic of)
Yanbiao Liao, Tsinghua University (China)
Byoungho Lee, Seoul National University (Korea, Republic of)
Yu-Lung Lo, National Cheng Kung University (Taiwan)
Alexis Mendez, MCH Engineering (United States)
Kyunghwan Oh, Yonsei University (Korea, Republic of)
Yunjiang Rao, University of Electronic Science and Technology of China (China)
David D. Sampson, The University of Western Australia (Australia)
Jose Luis Santos, Universidade do Porto (Portugal)
Perry Shum, Nanyang Technological University (Singapore)
Ralph P. Tatam, Cranfield University (United Kingdom)
Hwayaw Tam, The Hong Kong Polytechnic University (Hong Kong, China)
Frederique Vanholsbeek, University of Auckland (New Zealand)
Anbo Wang, Virginia Polytechnic Institute and State University (United States)
Reinhardt Willsch, Institute of Photonics (Germany)
Minghong Yang, Wuhan University of Technology (China)
Introduction

The Fifth Asia-Pacific Optical Sensors Conference (APOS 2015) was held 20–22 May 2015, at the Lotte City Hotel Jeju in Jeju, Korea.

APOS 2015 continues a series of conferences that are intended to provide a central forum for an update and review of technical information covering a wide range of optical sensing fields—from fundamental research to systems and applications. The conference is open to researchers and professionals from the Asia-Pacific Rim as well as all regions of the world.

Since the first event held in Chengdu, China in 2008, APOS has become the key regional forum in this field and where an international collection of researchers and industry colleagues could get together to discuss and develop mutual collaborations. It is also the place where we can train the next generation of young researchers and leaders.

APOS 2015 was initiated to provide an open forum discussing state-of-the-art scientific and technological achievements in optical sensors, leading to future industrial applications. The conference included the following topics: Physical Sensing; Chemical and Gas Sensing; Biological/Biomedical Sensing and Imaging; Integrated Technologies for Sensing; Specialty Optical Fibers for Sensing; Grating and Component Technologies for Sensing; Novel Materials for Sensing, Distributed, Multiplexed and Networked Sensing; Environmental and Structural Monitoring; and Industrial Applications, Field Trials and Standardization. Many of the submitted papers described recently developed optical sensors. Sharing the research achievements from this conference will benefit the international scientific community.

This volume contains reviewed papers presented at APOS 2015; a total of 151 papers were selected among 181 submitted abstracts, including three plenary talks, 78 oral presentations, and 100 poster presentations covering 18 sessions. This work was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean government.

The committee chairs would like to express their sincere thanks to the organizing committee members, program committee members, international steering committee members and also all sponsoring and supporting organizations that offered essential support to the success of APOS 2015.

Byoungho Lee
Sang Bae Lee
Yunjiang Rao
Conference Sponsorship and Support

Conference Organizers
Optical Society of Korea

Technical Cosponsors
SPIE
The Optical Society
IEEE Photonics Society Center for Relativistic Laser Science

Supported by
Korea Federation of Science and Technology Societies (KOFST)
National Creative Research Center for Active Plasmonics Application Systems (SNU)
Korea Institute of Science and Technology (KIST)
Korea Tourism Organization
Jeju Tourism Organization
Jeju Convention & Visitors Bureau

Sponsors
FIBERPRO, Inc.
SeongKyeong Photonics
JT, Inc.
Taihan Fiberoptics Co., Ltd.
NineOne Co., Ltd.
CESCO Co., Ltd.
Advanced Photonics Research Institute