Front Matter: Volume 10806
Contents

xix Authors
xxvii Conference Committee
xxxiii Introduction

FEATURE ANALYSIS AND EXTRACTION

10806 02	Old film jitter elimination algorithm based on L-K optical flow [10806-29]
10806 03	Research on auto-sorting system based on fusion semantics of regular expression [10806-39]
10806 04	Salient object extraction in low depth-of-field images using SVDD [10806-64]
10806 05	A credible depth estimation method based on superpixel constraint matching [10806-73]
10806 06	Exemplar-based image inpainting using structural feature offsets statistics [10806-83]
10806 07	Wide-baseline matching based on line intersection features [10806-127]
10806 08	An optimized SIFT algorithm based on color space normalization [10806-177]
10806 09	Interactive two-stage framework for blur QR code location with complex background [10806-184]
10806 0A	Fuzzy fractional canonical correlation analysis [10806-201]
10806 0B	Data augmentation based on interest points of feature [10806-279]
10806 0C	Feature extraction based on morphological attribute profiles for classification of hyperspectral image [10806-297]
10806 0D	Hand tracking based on compressed sensing and multiple feature descriptors [10806-301]
10806 0E	Support vectors classification method based on projection vector boundary feature [10806-312]
PATTERN RECOGNITION

10806 0F Action recognition based on feature-level fusion [10806-42]
10806 0G Design and implementation of family service robots’ object recognition based on Webots [10806-50]
10806 0H Accuracy evaluation of automated object recognition using multispectral aerial images and neural network [10806-72]
10806 0I Algorithm of 3D hand posture recognition with space coordinates based on optimal feature selection [10806-87]
10806 0J A new two stages ATR architecture based on sparse auto encoder and learning network [10806-92]
10806 0K Adaptive key frame extraction from RGB-D for hand gesture recognition [10806-101]
10806 0L Synthetic aperture radar target identification based on incremental kernel extreme learning machine [10806-134]
10806 0M An improved auditory feature based on instantaneous frequency and gammatone filters for underwater acoustic target recognition [10806-136]
10806 0N Gait recognition based on optimized neural network [10806-217]
10806 0O 3D object recognition based on improved point cloud descriptors [10806-220]
10806 0P Recognition of a plant leaf based on convolutional neural networks [10806-222]
10806 0Q Ship target recognition based on multi-spectral infrared images [10806-298]
10806 0R Weighted sparse fusion for FV and FDT identification [10806-315]
10806 0S A study on the robustness of adaptive pattern recognition [10806-328]

TARGET DETECTION ALGORITHM AND APPLICATION

10806 0T Saliency detection via background features [10806-276]
10806 0U A pedestrian detection algorithm based on deep deconvolution networks in complex scenes [10806-7]
10806 0V Long-term object tracking algorithm with occlusion-awareness and re-detection [10806-24]
A contextual deep neural network with dilated convolutions for object detection in remote sensing images [10806-43]

Lane detection using spline model for freeway aerial videos [10806-108]

Improving methods for detecting people in video recordings using shifting time-windows [10806-121]

Real-time dangerous objects detection in millimeter wave images [10806-129]

Method for improving performance of fire control radar based on accumulation detection [10806-130]

Moving object detection in videos from hand-held camera [10806-133]

Forward vehicle detection method based on geometric constraint and multi-feature fusion [10806-139]

Extend the shallow part of single shot multibox detector via convolutional neural network [10806-141]

Dynamic object counting application based on object detection and tracking [10806-154]

A lane detection system based on TDA2EG [10806-163]

A maritime targets detection method based on hierarchical and multi-scale deep convolutional neural network [10806-169]

System design for moving target tracking based on mean-shift algorithm [10806-178]

An image preprocessing algorithm for infrared small target detection in the near-earth background [10806-181]

Dynamic saliency detection via CNN and spatial-temporal fusion [10806-195]

Multi-size object detection assisting fault diagnosis of power systems based on improved cascaded faster R-CNNs [10806-200]

An improved faster R-CNN approach for robust hand detection and classification in sign language [10806-210]

A convex method to minimal problems for fundamental matrix estimation with radial distortion [10806-255]

Multi-target detection with larger scale difference [10806-263]

Fabric surface detection using small sample learning based on naive Bayes [10806-267]
The improved adaptive mean-shift algorithm of single target tracking for infrared images [10806-280]

Multispectral salient object detection based on frequency domain [10806-282]

Moving object detection based on 3D total variation and weighted nonconvex nuclear norm [10806-296]

A closer look at U-net for road detection [10806-300]

FACE DETECTION AND RECOGNITION

A detection method for facial expression reenacted forgery in videos [10806-9]

A novel illumination normalization method in face recognition based on logarithmic total variation [10806-38]

BGP face recognition method based on heuristic information [10806-123]

Fast pedestrian detection using scale-aware pooling [10806-142]

Forehead-based face detection algorithm with multi-feature cascade framework for classroom [10806-194]

Double channel CNN for accurate age and gender estimation in complex scenarios [10806-205]

Human detection in depth images via two steps [10806-231]

Head-heuristic human detection in RGB-D images [10806-233]

Discriminative ability based facial expression recognition using kernel relief algorithm [10806-240]

Real-time people detection from a top-view ToF camera [10806-288]

Manifold aware discriminant collaborative graph embedding for face recognition [10806-299]

IMAGE IDENTIFICATION

Automatic target-reading device based on image recognition and Raspberry Pi [10806-68]

Three-dimensional convolutional neural networks applied to video sensor-based gait recognition [10806-17]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>Automatic oil tank recognition via detecting elliptic rooftop for optical UAV imagery</td>
<td>[10806-25]</td>
</tr>
<tr>
<td>1X</td>
<td>An adaptive human action recognition system based on two-layer AP</td>
<td>[10806-75]</td>
</tr>
<tr>
<td>1Y</td>
<td>A vehicle logo recognition method based on improved SIFT feature and bag-of-words model</td>
<td>[10806-118]</td>
</tr>
<tr>
<td>1Z</td>
<td>An efficient accelerator unit for sparse convolutional neural network</td>
<td>[10806-180]</td>
</tr>
<tr>
<td>20</td>
<td>Application of cuckoo search algorithm for texture recognition based on water areas</td>
<td>[10806-209]</td>
</tr>
<tr>
<td>21</td>
<td>Recognition of color changes in strawberry juice powders using self-organizing feature map</td>
<td>[10806-224]</td>
</tr>
<tr>
<td>22</td>
<td>A fast wavelet-based algorithm for lunar terrain recognition with different data</td>
<td>[10806-277]</td>
</tr>
<tr>
<td>23</td>
<td>Balanced synthetic data for accurate scene text spotting</td>
<td>[10806-291]</td>
</tr>
<tr>
<td>24</td>
<td>Learning from synthetic data for automatic license plate detection and recognition</td>
<td>[10806-311]</td>
</tr>
<tr>
<td>25</td>
<td>Rail fastener automatic recognition method in complex background</td>
<td>[10806-314]</td>
</tr>
<tr>
<td></td>
<td>IMAGE ENHANCEMENT AND IMAGE DENOISING</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Space-variant text image deblurring with nonconvex constraint</td>
<td>[10806-95]</td>
</tr>
<tr>
<td>27</td>
<td>Nonconvex variational model for space variant image deblurring</td>
<td>[10806-183]</td>
</tr>
<tr>
<td></td>
<td>Part Two</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Low-light image enhancement using multi-layer fusion and detail recovery</td>
<td>[10806-21]</td>
</tr>
<tr>
<td>29</td>
<td>Deep sea image enhancement algorithm based on distance model</td>
<td>[10806-80]</td>
</tr>
<tr>
<td>2A</td>
<td>Reducing the loss of color and details in single image defogging</td>
<td>[10806-91]</td>
</tr>
<tr>
<td>2B</td>
<td>Research on the synthetic method of ink painting based on convolutional neural network</td>
<td>[10806-234]</td>
</tr>
<tr>
<td>2C</td>
<td>Impulse noise removal based on adaptive multi-directional weighted mean filter</td>
<td>[10806-271]</td>
</tr>
</tbody>
</table>
IMAGE MATCHING

<table>
<thead>
<tr>
<th>10806 2D</th>
<th>An improved matching method base on SURF [10806-10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10806 2E</td>
<td>Image matching algorithm with color information based on SIFT [10806-11]</td>
</tr>
<tr>
<td>10806 2F</td>
<td>A template matching acceleration algorithm based on Cuda [10806-35]</td>
</tr>
<tr>
<td>10806 2G</td>
<td>Registration of dense matched point cloud from UAV-borne images [10806-40]</td>
</tr>
<tr>
<td>10806 2H</td>
<td>Deep space image registration method based on geometric feature of triangles constructed by neighbor stars [10806-79]</td>
</tr>
<tr>
<td>10806 2I</td>
<td>Improved geometrical SAR image registration based on elevation correction [10806-104]</td>
</tr>
<tr>
<td>10806 2J</td>
<td>Image registration of infrared and visible based on SIFT and SURF [10806-186]</td>
</tr>
<tr>
<td>10806 2K</td>
<td>A spatiotemporal multiscale statistical matching (SMSM) model for human actions detection [10806-318]</td>
</tr>
</tbody>
</table>

IMAGE SEGMENTATION

<table>
<thead>
<tr>
<th>10806 2L</th>
<th>Profile measurement method of aviation part based on step boundary model [10806-292]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10806 2M</td>
<td>A novel real-time video mosaic block detection based on intensity order and shape feature [10806-341]</td>
</tr>
<tr>
<td>10806 2N</td>
<td>Liver tumor segmentation based on level set [10806-2]</td>
</tr>
<tr>
<td>10806 2O</td>
<td>Fully convolutional neural network combined with K-means clustering algorithm for image segmentation [10806-6]</td>
</tr>
<tr>
<td>10806 2P</td>
<td>Pulmonary nodules segmentation method based on auto-encoder [10806-22]</td>
</tr>
<tr>
<td>10806 2Q</td>
<td>Anisotropic Gaussian kernels edge detection algorithm based on the chromatic difference [10806-31]</td>
</tr>
<tr>
<td>10806 2R</td>
<td>Automatic segmentation of human depth map based on semantic segmentation of FCN and depth segmentation [10806-51]</td>
</tr>
<tr>
<td>10806 2S</td>
<td>Local segmentation of skull CT image using morphological processing and sparse field level set method [10806-103]</td>
</tr>
<tr>
<td>10806 2T</td>
<td>Human segmentation of the thermal infrared sequences with moving background [10806-144]</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>10806 2U</td>
<td>Research on spectral clustering infrared image segmentation algorithm based on improved sparse matrix</td>
</tr>
<tr>
<td>10806 2V</td>
<td>Real-time pedestrian detection for driver assistance systems based on deep learning</td>
</tr>
<tr>
<td>10806 2W</td>
<td>Image target segmentation method based on fuzzy entropy and salient region extraction</td>
</tr>
<tr>
<td>10806 2X</td>
<td>OCR with a convolutional neural networks integration model in machine vision</td>
</tr>
<tr>
<td>10806 2Y</td>
<td>Dynamic texture segmentation using spectral clustering based on CHMMs</td>
</tr>
<tr>
<td>10806 2Z</td>
<td>Edge detection based on adaptive oriented double opponent neurons</td>
</tr>
</tbody>
</table>

HIGH-RESOLUTION IMAGES AND HYPERSPECTRAL IMAGES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10806 30</td>
<td>Performance evaluation of phase diversity wavefront sensing in obtaining high-resolution images</td>
<td>[10806-12]</td>
</tr>
<tr>
<td>10806 31</td>
<td>Iterative method to decompose hyperspectral mixed pixel using barycentric coordinate</td>
<td>[10806-77]</td>
</tr>
<tr>
<td>10806 32</td>
<td>The model of additive noise of digital high spatial resolution images</td>
<td>[10806-111]</td>
</tr>
<tr>
<td>10806 33</td>
<td>Single image super resolution based on multi-scale structural self-similarity and neighborhood regression</td>
<td>[10806-119]</td>
</tr>
<tr>
<td>10806 34</td>
<td>An automatic liver fibrosis qualitative analysis method based on hyperspectral images</td>
<td>[10806-125]</td>
</tr>
<tr>
<td>10806 35</td>
<td>Hyperspectral image classification based on dimension reduction combination and rotation SVM ensemble learning</td>
<td>[10806-164]</td>
</tr>
<tr>
<td>10806 36</td>
<td>Local and global keypoint description for the high resolution remote sensing image registration</td>
<td>[10806-208]</td>
</tr>
<tr>
<td>10806 37</td>
<td>A comparative study of different normalized difference vegetation indices from the wide band spectral imager of Tiangong II, China</td>
<td>[10806-215]</td>
</tr>
<tr>
<td>10806 38</td>
<td>Hyperspectral image classification based on EMAPs spatial-spectral features fusion and SMLR</td>
<td>[10806-274]</td>
</tr>
<tr>
<td>10806 39</td>
<td>Single image super-resolution based on residual learning and convolutional sparse coding</td>
<td>[10806-290]</td>
</tr>
</tbody>
</table>
3D RECONSTRUCTION

<table>
<thead>
<tr>
<th>10806 3A</th>
<th>Stereo matching based 3D model reconstruction [10806-30]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10806 3B</td>
<td>3D reconstruction of ultrasonic carotid artery based on fractal dimension and marching cubes [10806-85]</td>
</tr>
<tr>
<td>10806 3C</td>
<td>Noncontact method for determination of the fuel assembly height by means of a 3D reconstruction [10806-116]</td>
</tr>
<tr>
<td>10806 3D</td>
<td>Application of unmanned aerial vehicle oblique photography in 3D modeling of crag [10806-155]</td>
</tr>
<tr>
<td>10806 3E</td>
<td>High precision measurement and 3D reconstruction of non-cooperative spacecraft based on binocular vision [10806-187]</td>
</tr>
<tr>
<td>10806 3F</td>
<td>Compressive sensing magnetic resonance imaging reconstruction based on nonlocal autoregressive modeling [10806-188]</td>
</tr>
<tr>
<td>10806 3G</td>
<td>Research on SAR image reconstruction based on optimized compressive sensing algorithm [10806-190]</td>
</tr>
</tbody>
</table>

IMAGING SYSTEM DESIGN AND TECHNOLOGY

<table>
<thead>
<tr>
<th>10806 3H</th>
<th>Sparse and adaptive fringe-enhancement efficiency analysis in 3D optical digital fringe-projection imaging [10806-48]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10806 3I</td>
<td>A bistatic ISAR imaging method of rectilinear maneuvering target [10806-66]</td>
</tr>
<tr>
<td>10806 3J</td>
<td>Microwave staring correlated imaging via the combination of nonconvex low-rank and total variation regularization [10806-88]</td>
</tr>
<tr>
<td>10806 3K</td>
<td>Target discrimination via hyper-spectral imaging and spectral generalized angle analysis [10806-105]</td>
</tr>
<tr>
<td>10806 3L</td>
<td>Radar correlated imaging for extended target by the clustered sparse Bayesian learning with Laplace prior [10806-107]</td>
</tr>
<tr>
<td>10806 3M</td>
<td>Photon counting 3D imaging lidar adaptive target contours acquiring method [10806-204]</td>
</tr>
<tr>
<td>10806 3N</td>
<td>A 3D denoising algorithm based on photon-counting imaging at low light level [10806-236]</td>
</tr>
<tr>
<td>10806 3O</td>
<td>A low light SCMOs imaging system based on FPGA [10806-241]</td>
</tr>
<tr>
<td>10806 3P</td>
<td>Three dimensional photon counting integral imaging based on Bayesian adaptive reconstruction [10806-248]</td>
</tr>
<tr>
<td>10806 3Q</td>
<td>Oceanic surface XTI SAR simulation for TOPS imaging mode [10806-278]</td>
</tr>
</tbody>
</table>
FILTER DESIGN AND FILTERING ALGORITHM

10806 3R Imaging experiment of low frequency ultrawideband bistatic SAR using fixed-receiver configuration [10806-319]
10806 3S Fast time domain imaging for bistatic SAR including motion errors [10806-321]
10806 3T The study of panoramic images of water to air imaging based on space coordinate transformation [10806-335]

10806 3U Estimation of wet variable’s background error information for regional model [10806-86]
10806 3V A novel correlation filter tracking algorithm based on feature integration [10806-93]
10806 3W ISAR image enhancement based on MCPF and special narrow spectrum filter [10806-99]
10806 3X SAR image filtering algorithm based on adaptive hexagonal window [10806-124]
10806 3Y Improved image haze removal algorithm based on fast guided filter [10806-238]
10806 3Z Review and research of speckle reducing filters for SAR image [10806-338]
10806 40 Parallel deblocking filtering algorithm on GPU [10806-340]

VIDEO PROCESSING AND CODING TECHNOLOGY

10806 41 Video tracking technology based on improved compressed sensing algorithm [10806-13]
10806 42 Smoky vehicle detection in surveillance video based on gray level co-occurrence matrix [10806-45]
10806 43 Smoke detection in video using dissipation function and support vector machine [10806-46]
10806 44 A 3D-CNN based video hashing method [10806-82]
10806 45 A video face clustering approach based on sparse subspace representation [10806-100]
10806 46 Novel pseudo-cylindrical projection based tile segmentation scheme for omnidirectional video [10806-146]
10806 47 Design of high-reliability and HD video remote surveillance system [10806-228]
10806 48 A selective encryption algorithm of video based on white-box AES [10806-286]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>A fast CU partition algorithm based on the coding cost in screen content coding</td>
<td>[10806-326]</td>
</tr>
</tbody>
</table>

IMAGE PROCESSING TECHNOLOGY AND METHOD

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>Automatic image style transfer using emotion-palette</td>
<td>[10806-84]</td>
</tr>
<tr>
<td>4B</td>
<td>Parameterization texture mapping method based on the simplification of irregular triangular mesh</td>
<td>[10806-19]</td>
</tr>
<tr>
<td>4C</td>
<td>Image compressed sensing based on dictionary learning via bilinear generalized approximate message passing</td>
<td>[10806-26]</td>
</tr>
<tr>
<td>4D</td>
<td>Example-based analysis and alignment system for human motion data</td>
<td>[10806-56]</td>
</tr>
<tr>
<td>4E</td>
<td>Parameterized four direction contour-invariant extrapolator for DPCM image compression</td>
<td>[10806-143]</td>
</tr>
<tr>
<td>4F</td>
<td>Methodology of data processing in the process of neural image analysis of pork half carcasses</td>
<td>[10806-157]</td>
</tr>
<tr>
<td>4G</td>
<td>Estimating exposure and noise of space target image with bidirectional reflectance distribution function</td>
<td>[10806-216]</td>
</tr>
<tr>
<td>4H</td>
<td>EM clustering algorithm modification using multivariate hierarchical histogram in the case of undefined cluster number</td>
<td>[10806-260]</td>
</tr>
<tr>
<td>4I</td>
<td>NEDI-based interpolation for hierarchical image compression</td>
<td>[10806-261]</td>
</tr>
<tr>
<td>4J</td>
<td>Generate optical flow with conditional generative adversarial network</td>
<td>[10806-302]</td>
</tr>
</tbody>
</table>

Part Three

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4K</td>
<td>A novel variation-based block compressed sensing restoration method</td>
<td>[10806-325]</td>
</tr>
<tr>
<td>4L</td>
<td>Study on the performance of several SAR image gradient operators</td>
<td>[10806-339]</td>
</tr>
<tr>
<td>4M</td>
<td>Image interpolation via discontinuous B-spline on android platform</td>
<td>[10806-23]</td>
</tr>
</tbody>
</table>

IMAGE INFORMATION MANAGEMENT AND SECURITY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4N</td>
<td>A super-resolution infrared image information acquisition method based on mechanism of eye micro-movements</td>
<td>[10806-37]</td>
</tr>
<tr>
<td>4O</td>
<td>Comparison of activation functions in a shallow convolutional neural network for natural image sharpness assessment</td>
<td>[10806-196]</td>
</tr>
</tbody>
</table>
Validation of a photogrammetric method for evaluating seed potato cover by a chemical agent [10806-199]

Using signal-to-noise ratio to connect the quality assessment of natural and medical images [10806-211]

Joint concept factorization for image representation [10806-251]

Blind image quality assessment for screen content images based on patch-wise multi-order derivatives [10806-322]

A steganographic with better visual quality and security by improving full exploiting modification direction [10806-327]

REMOTE SENSING TECHNOLOGY AND APPLICATION

Research for road detection technology in low illumination remote sensing image [10806-4]

Scene classification of remote sensing image based on deep convolutional neural network [10806-90]

A novel correlation method of microwave staring correlated imaging based on multigrid and LSQR [10806-102]

A new variational fusion method for remote sensing images based on sparse representation [10806-138]

Cloud detection of remote sensing images on Landsat-8 by deep learning [10806-173]

Water area changes of the Tonle Sap Lake based on remote sensing data [10806-249]

Single image thin cloud removal for remote sensing images based on conditional generative adversarial nets [10806-259]

The application of UAV remote sensing in mapping of damaged buildings after earthquakes [10806-265]

A novel rotation invariance hashing network for fast remote sensing image retrieval [10806-268]

A novel remote sensing images fusion algorithm combining extended NSST and modified PCNN [10806-323]

Road information extraction based on knowledge using WorldView-2 images [10806-170]
10806 55	Non-contact heart rate measurements based on skin detection [10806-3]
10806 56	Post-processing for retinal vessel detection [10806-5]
10806 57	Lung nodules detection based on modified extreme learning machine with deep convolutional features [10806-18]
10806 58	Automatic quantification of crypt architecture in ex vivo gastrointestinal epithelium for high-resolution microendoscopic images [10806-20]
10806 59	Pseudo-3D fully convolutional DenseNets for brain tumor segmentation [10806-41]
10806 5A	A modified faster R-CNN method to improve the performance of the pulmonary nodule detection [10806-62]
10806 5B	Automated airway segmentation from chest CT images combined uniform and local intensities and airway topology structure [10806-114]
10806 5C	Heart segmentation from chest x-ray images based on improved active shape model [10806-147]
10806 5D	An end-to-end cells detection approach for colon cancer histology images [10806-202]
10806 5E	An improved ultrasound image segmentation method based on level set [10806-237]

| MEDICAL IMAGE PROCESSING |
10806 5G	False positive reduction of pulmonary nodules using three-channel samples [10806-27]
10806 5H	Application of structural group sparsity recovery model for brain MRI [10806-131]
10806 5I	Convolutional neural network for automated histopathological grading of breast cancer on digital mammograms [10806-159]
10806 5J	Non-contact blood pressure measurement based on pulse transit time [10806-174]
10806 5K	Fault diagnosis of aero-engine endoscopic image processing based on BP neural network [10806-189]
10806 5L	A multiclass classification method for building MALDI-TOF mass spectrometry database of microbes based on SVM [10806-239]
10806 5M	Medical image fusion based on NSCT and sparse representation [10806-244]
Multimodal analysis of structural and functional MRI for Schizophrenia diagnosis [10806-264]

Hippocampus analysis based on 3D CNN for Alzheimer's disease diagnosis [10806-275]

Deep multi-label 3D ConvNet for breast cancer diagnosis in DBT with inversion augmentation [10806-334]

A method of dorsal hand vein identification [10806-203]

COMPUTER VISION AND IMAGE PROCESSING

Cloud concentration classification of UAV images based on image quality [10806-8]

Village detection based on deep semantic segmentation network in Google Earth satellite images [10806-33]

Target measurement in elliptical orbit using generalized voxel coloring [10806-47]

A novel range profile compensation method of high speed target for ISAR [10806-61]

Explore fine-grained discriminative visual explanation when making classification decision [10806-69]

An improved active contour model algorithm based on region [10806-106]

Early wildfire smoke detection based on improved codebook model and convolutional neural networks [10806-120]

Weakly supervised semantic segmentation using constrained multi-image model and saliency prior [10806-162]

A study on classification of mineral pigments based on spectral angle mapper and decision tree [10806-214]

Visualization technology research and application in partial-wear between the sucker rod and tube of pumping unit [10806-218]

A comparison of shadow detection methods for high spatial resolution remote sensing images [10806-219]

Design of an effective platform for unmanned aerial vehicles to collect research material in the form of aerial photographs [10806-226]

Deep ViDAR: CNN based 360° panoramic video system for outdoor robot visual navigation and SLAM [10806-250]

Checkerboard image processing under uneven illumination for robust Harris corner detection in camera calibration [10806-337]
COMPUTER GRAPHICS AND PHOTOGRAPHIC TECHNOLOGY

10806 66	A method of correction building roofs offset using wall baselines from SAR imagery [10806-28]
10806 67	3D pose estimation using low resolution time-of-flight (ToF) cameras [10806-54]
10806 68	The design for the optical part of a maintenance support system [10806-65]
10806 69	Enhanced light field depth estimation for complex occlusion scenes [10806-145]
10806 6A	ReLU for sub space approximation and its application in dimension reduction [10806-165]
10806 6B	A novel method for high dynamic range with binocular cameras [10806-166]
10806 6C	Virtual game scenario generation using brain computer interface [10806-167]
10806 6D	The virtual composing system for museum based on augmented reality technology [10806-175]
10806 6E	Combining path-and-posture planning in 3D environment [10806-289]

COMMUNICATION AND SIGNAL ANALYSIS

10806 6F	Extraction of cardiopulmonary rates from 24ghz Doppler radar using time frequency analysis [10806-36]
10806 6G	Research on D2D resource allocation algorithm based on improved fuzzy clustering [10806-53]
10806 6H	Research on single-point positioning and differential positioning of Beidou-2 [10806-117]
10806 6I	Mobile broadband waveform prediction based on BELLHOP model [10806-172]
10806 6J	Efficient computation of the Strehl ratio for the wavefront coding system with the rotationally symmetric phase mask [10806-212]
10806 6K	Design of the program for conversion from Kazak in China to IPA [10806-252]
10806 6L	Detection of pulse-wave foot of photoplethysmography by projection mapping [10806-303]
10806 6M	Early fault diagnosis of bearing using empirical wavelet transform with energy entropy [10806-15]
Variational Bayesian super resolution acceleration using preconditioned conjugate gradient [10806-44]

Hybrid connection network for semantic segmentation [10806-109]

An automatic acquisition algorithm for power distribution line based on vehicle-mounted system [10806-128]

A tricolor monitoring system of net loan based on Weibo visualization [10806-132]

Summarization of sequencing encryption algorithm based on AES and chaotic sequences [10806-148]

Jamming decision under condition of feature incomplete database [10806-161]

Geospatial location characteristics and global subdivision grid analysis of multiple disaster data [10806-213]

Unsupervised neural classification of six chosen apple pests using learned vector quantization algorithm [10806-227]

Data clustering based on label consistent constraint matrix factorization [10806-253]

Research on artificial intelligence recommendation model based on genetic algorithm [10806-254]

Detection of sticker based adversarial attacks [10806-283]

Research on the multi-classifier features of the motor imagery EEG signals in the brain computer interface [10806-305]

Local feature entropy based non-uniform simplification algorithm [10806-333]

Effects of temperature environment on ranging accuracy of lidar [10806-273]

Long-term persistence and cross-wavelet transform analysis of solar filament activity [10806-317]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdelkader, Ali Cherif, 3W
An, Jianmei, 72
An, Wei, 4Y
An, Xin, 58
Bai, Lianfa, 1F, 1G, 2K
Bai, Lin, 0C, 6A
Bai, Ye, 05
Bao, Wenxing, 35, 38
Bi, Cheng, 63
Bi, Jing, 2P, 57, 5G
Bian, He, 47
Bian, Jiali, 45
Bian, Zijian, 5B, 5B
Blokus, Adam, 0Y
Boni
Becki, P., 21, 4F, 4P, 62, 6V
Cai, Wei, 2U
Cai, Yunfang, 72
Cai, Zhi, 5D
Cao, Jianzhong, 3E, 4U, 55, 5J, 5T
Chang, Ming, 2R
Chang, Zhanqiang, 66
Chayakulkheeree, Jatuporn, 5P
Chen, Cong, 1Y
Chen, Guoyue, 5D
Chen, Hong, 33
Chen, Jiajia, 50
Chen, Jianxuan, 6C
Chen, Jingyu, 6Q
Chen, Li-chao, 0N
Chen, Pengyong, 55, 5J
Chen, Qian, 3M, 3N, 3P
Chen, Qiaosong, 28
Chen, Wei, 16
Chen, Weijun, 2O
Chen, Xiaodi, 6S
Chen, Xinhua, 3K, 6J
Chen, Youguang, 1H
Chen, Yuan, 6R
Chen, Yuanjin, 3P
Chen, Yuheng, 3K
Chen, Zengping, 1W, 3S
Chen, Zhao, 3V
Chen, Zhenping, 3R
Chen, Zhiquan, 0R
Chen, Zhongwei, 20
Cheng, Jixiang, 06
Cheng, Qingmei, 1N
Cheng, Wanli, 0F

Cheng, Xi En, 1P, 1Q
Cheng, Xuelong, 6X
Cheng, Yajun, 4N
Cheng, Yinbo, 4C
Cheng, Ying, 4G
Chong, Lanxiong, 5Q
Chu, Xiaoli, 70
Cui, Hong, 43
Cui, Qingqin, 1H
Cui, Ruoxuan, 5O
Dai, Guangzhe, 4Q
Dai, Houde, 0T
Dai, Peng, 25
Dai, Shaosheng, 4N
Dai, Wen, 71
Dan, Lijun, 5M
Deng, Wupeng, 09
Deng, Xin, 28
Deng, Xinp, 4Y
Denisova, A. Y., 4H
Diao, Luhong, 6A
Ding, Shaohu, 0K
Ding, Youdong, 02
Dong, Lianqin, 2R
Dong, Qinghuang, 2B
Dong, Sun, 02
Dong, Yingjie, 6Z
Dong, Zhen, 2I
Du, Jie, 1R
Du, Jindan, 71
Du, Xinyu, 25
Du, Xiwen, 6Z
Du, Yunfei, 2E
Duan, Junyi, 4M
Duan, Yao, 0B
Egervâi, Csanád, 6Y
Fan, Cheng, 5Z
Fan, Weikang, 5A
Fan, Xuewu, 3O
Fang, Li, 46
Fang, Qian-xue, 10
Fang, T., 64
Feng, Jia, 47
Feng, Shangsheng, 28
Fojud, A., 4F, 4P
Fu, Canmiao, 13
Fu, Jun’e, 42, 51
Fu, Xinchuan, 1M
Gan, Bendui, 2I
Gao, Feng, 71
Gao, Jianbo, 5A
Gao, Jian, 1G
Gao, Peng, 2L
Gao, Tianyu, 71
Gao, Wei, 0B, 2E, 5M
Gao, Xiaohui, 3Q
Gao, Zhengxia, 5V
Gashnikov, Mikhail, 4E, 4I
Gawałek, J., 21, 4P
Ge, Wei, 11
Gierz, Ł., 21, 4F, 4P, 62, 6V
Gierz, Sz., 4P
Gong, Jian, 0Q
Gong, Shizhong, 4T
Gong, Zhaoxuan, 2P, 57, 5G
Gong, Zhenfei, 2V
Gowthaman, T., 5H
Gu, Guohua, 3M, 3N, 3P
Gu, Mei
Gu, Zichen, 25
Guo, Canzhu, 3B
Guo, Chenlong, 0L
Guo, Chuanei, 5X
Guo, Cuicui, 1J
Guo, Fan, 6C
Guo, Huinan, 5T
Guo, Mao, 2P
Guo, Meng, 1N
Guo, Qingpu, 6E
Guo, Wei, 2P, 57, 5G
Guo, Xiwei, 07
Guo, Yaqin, 0E
Guo, Yingjiu, 0P
Hai, Jinjin, 5I
Han, Shuping, 6I
Han, Cheng, 05
Han, Dong, 07
Han, Jing, 1F, 1G, 2K
Han, Mingfei, 1D
Han, Pei, 4X
Han, Zheng, 5Y
He, Bing, 2O
He, Bingqian, 5X
He, Jian, 55
He, Jun, 67
He, Jun, 1N
He, Peng, 07
He, Weiji, 3M, 3N, 3P
He, Ying, 67
He, Zhiwei, 15
He, Zhiyong, 1E
Hnatuthenko, Volodymyr, 0H
Horváth, András, 6Y
Hou, Chuan-xun, 18
Hou, Xuyin, 3Q
Hu, Changhui, 1K
Hu, A-min, 0N, 4B
Hu, Bingliang, 5Z
Hu, Guo Liang, 3E, 4U
Hu, Huanjun, 2A
Hu, Jing Feng, 1P
Hu, Jinshuang, 2M
Hu, Jiwei, 0F
Hu, Qiping, 68
Hu, Shiming, 66
Hu, Yuping, 1V
Hu, Zhaoyang, 1A, 1O
Hu, Zhe, 5W
Huang, Haifeng, 3Q
Huang, Huimin, 3E, 47, 4U, 5T
Huang, Jianqiang, 2J
Huang, Jing, 4A
Huang, Jiye, 1S
Huang, Lai, 20
Huang, Yingjie, 68
Huang, Zhangjin, 23
Huang, Zhiliang, 1Y
Hui, Bingwei, 0O
Hui, Meng, 0C
Huo, H., 64
Hu, Nan, 6F
Ji, Yi, 3K
Jia, Jianbang, 2J
Jia, Xiaoyan, 5Y
Jia, Xin, 3I, 5U, 6T
Jia, Ying, 69
Jia, Zhenyuan, 2L
Jiang, Aiwen, 5V
Jiang, Han, 1K
Jiang, Huiqin, 5A
Jiang, Xiaoyang, 0G
Jiang, Wei, 0T
Jiang, Xudong, 5Q
Jiao, Shuai, 66
Jin, Peiquan, 0W, 52
Jin, Xiaoying, 0G
Josephraj, Alex Noel, 3B, 41, 5E
Kamagra, Abel, 3H
Kamata, Sei-ichiro, 6P
Kan, Guangyuan, 51
Kim, Kyeong-Seop, 6L
Kim, Yoo-hwan, 2P, 57, 5G
Kong, Lianfeng, 1A, 1O
Kong, Lingchuan, 57
Kong, Lingqin, 2R
Koszela, K., 4F, 4P, 62, 6V
Kou, Xinyu, 48
Kraftsov, Sergey, 32, 3C
Krawczyk, Henryk, 0Y
Lan, Zhiguang, 2L
Lee, Jeong-Whan, 6L, 6L
Lei, Hao, 2E
Lei, Lei, 2M, 40
Lei, Naihai, 41
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lei, Tianjie</td>
<td>4Z, 51</td>
</tr>
<tr>
<td>Leng, Haibing</td>
<td>3O</td>
</tr>
<tr>
<td>Li, Ailan</td>
<td>0P</td>
</tr>
<tr>
<td>Li, Baopeng</td>
<td>2E</td>
</tr>
<tr>
<td>Li, Bin</td>
<td>0A, 59</td>
</tr>
<tr>
<td>Li, Changkai</td>
<td>3Z, 4L, 5K</td>
</tr>
<tr>
<td>Li, Chi</td>
<td>2A</td>
</tr>
<tr>
<td>Li, Cong-Li</td>
<td>5R</td>
</tr>
<tr>
<td>Li, Fuhai</td>
<td>3R, 3S</td>
</tr>
<tr>
<td>Li, Guoxin</td>
<td>58</td>
</tr>
<tr>
<td>Li, Hai</td>
<td>2N</td>
</tr>
<tr>
<td>Li, Hao</td>
<td>58</td>
</tr>
<tr>
<td>Li, Hong-an</td>
<td>ON, 4B</td>
</tr>
<tr>
<td>Li, Hongbo</td>
<td>3O</td>
</tr>
<tr>
<td>Li, Huiqi</td>
<td>22</td>
</tr>
<tr>
<td>Li, Jianxiang</td>
<td>6Q</td>
</tr>
<tr>
<td>Li, Jing</td>
<td>44</td>
</tr>
<tr>
<td>Li, Juelong</td>
<td>1E</td>
</tr>
<tr>
<td>Li, Jun</td>
<td>1K, 2D, 4Y</td>
</tr>
<tr>
<td>Li, Junpan</td>
<td>04</td>
</tr>
<tr>
<td>Li, Li</td>
<td>3D</td>
</tr>
<tr>
<td>Li, Liwei</td>
<td>1L</td>
</tr>
<tr>
<td>Li, Na</td>
<td>2Y</td>
</tr>
<tr>
<td>Li, Po</td>
<td>6F</td>
</tr>
<tr>
<td>Li, Qiong</td>
<td>34</td>
</tr>
<tr>
<td>Li, Ruimei</td>
<td>0I</td>
</tr>
<tr>
<td>Li, Shanjun</td>
<td>1A, 1O</td>
</tr>
<tr>
<td>Li, Shengyang</td>
<td>1D</td>
</tr>
<tr>
<td>Li, Shi</td>
<td>6O</td>
</tr>
<tr>
<td>Li, Sikun</td>
<td>3H</td>
</tr>
<tr>
<td>Li, Ting</td>
<td>5Q</td>
</tr>
<tr>
<td>Li, Weihai</td>
<td>69</td>
</tr>
<tr>
<td>Li, Wen Jun</td>
<td>29</td>
</tr>
<tr>
<td>Li, Wenyang</td>
<td>0K</td>
</tr>
<tr>
<td>Li, Xia</td>
<td>2N</td>
</tr>
<tr>
<td>Li, Xing</td>
<td>1X</td>
</tr>
<tr>
<td>Li, Xingyue</td>
<td>0W, 52</td>
</tr>
<tr>
<td>Li, Xinyi</td>
<td>6B</td>
</tr>
<tr>
<td>Li, Yao</td>
<td>5N</td>
</tr>
<tr>
<td>Li, Yi Cheng</td>
<td>1P, 1Q</td>
</tr>
<tr>
<td>Li, Yiwen</td>
<td>4A</td>
</tr>
<tr>
<td>Li, Yongbin</td>
<td>0X</td>
</tr>
<tr>
<td>Li, Yonghong</td>
<td>6K</td>
</tr>
<tr>
<td>Li, Yun</td>
<td>0A</td>
</tr>
<tr>
<td>Li, Zhan-li</td>
<td>0N, 4B</td>
</tr>
<tr>
<td>Li, Zhidan</td>
<td>0E</td>
</tr>
<tr>
<td>Li, Zhongke</td>
<td>0V</td>
</tr>
<tr>
<td>Li, Zhu</td>
<td>1S, 29, 2F</td>
</tr>
<tr>
<td>Liang, Bin</td>
<td>67</td>
</tr>
<tr>
<td>Liang, Chang</td>
<td>63</td>
</tr>
<tr>
<td>Liang, Jiarui</td>
<td>22</td>
</tr>
<tr>
<td>Liang, Lei</td>
<td>71</td>
</tr>
<tr>
<td>Liang, Xiao</td>
<td>6P</td>
</tr>
<tr>
<td>Liao, Chang</td>
<td>1S</td>
</tr>
<tr>
<td>Liao, Qingmin</td>
<td>OR, 1C, 4J, 4S</td>
</tr>
<tr>
<td>Lin, Caiyan</td>
<td>6R</td>
</tr>
<tr>
<td>Lin, Liyuan</td>
<td>53</td>
</tr>
<tr>
<td>Lin, Mingqiang</td>
<td>0T</td>
</tr>
<tr>
<td>Lin, Song</td>
<td>1E</td>
</tr>
<tr>
<td>Lin, Xiaoli</td>
<td>4K</td>
</tr>
<tr>
<td>Lisiak, D.</td>
<td>4F, 6V</td>
</tr>
<tr>
<td>Liu, Changming</td>
<td>2U</td>
</tr>
<tr>
<td>Liu, Chengming</td>
<td>4M</td>
</tr>
<tr>
<td>Liu, Gulyang</td>
<td>1D</td>
</tr>
<tr>
<td>Liu, Hao</td>
<td>58</td>
</tr>
<tr>
<td>Liu, J.-P.</td>
<td>64</td>
</tr>
<tr>
<td>Liu, Jiange</td>
<td>5S</td>
</tr>
<tr>
<td>Liu, Jiren</td>
<td>5B</td>
</tr>
<tr>
<td>Liu, Kai</td>
<td>17</td>
</tr>
<tr>
<td>Liu, Liangjun</td>
<td>47</td>
</tr>
<tr>
<td>Liu, Lihou</td>
<td>1I</td>
</tr>
<tr>
<td>Liu, Manhua</td>
<td>5N, 5O</td>
</tr>
<tr>
<td>Liu, Meng</td>
<td>2R</td>
</tr>
<tr>
<td>Liu, Mingzhi</td>
<td>6G</td>
</tr>
<tr>
<td>Liu, Qingheng</td>
<td>37</td>
</tr>
<tr>
<td>Liu, Qiufei</td>
<td>2Y</td>
</tr>
<tr>
<td>Liu, Qixia</td>
<td>2Y</td>
</tr>
<tr>
<td>Liu, Quan</td>
<td>09</td>
</tr>
<tr>
<td>Liu, Ruihao</td>
<td>5N</td>
</tr>
<tr>
<td>Liu, Ryan Wen</td>
<td>26, 27</td>
</tr>
<tr>
<td>Liu, Siyu</td>
<td>1U</td>
</tr>
<tr>
<td>Liu, Song-Tao</td>
<td>2W</td>
</tr>
<tr>
<td>Liu, Tianbo</td>
<td>31</td>
</tr>
<tr>
<td>Liu, Tong</td>
<td>29</td>
</tr>
<tr>
<td>Liu, Wei</td>
<td>2L, 6H</td>
</tr>
<tr>
<td>Liu, Xiaojing</td>
<td>4B</td>
</tr>
<tr>
<td>Liu, Xinlong</td>
<td>4G</td>
</tr>
<tr>
<td>Liu, Yanzhou</td>
<td>48</td>
</tr>
<tr>
<td>Liu, Yancong</td>
<td>40</td>
</tr>
<tr>
<td>Liu, Yang</td>
<td>6E, 6G</td>
</tr>
<tr>
<td>Liu, Zhanqiang</td>
<td>36</td>
</tr>
<tr>
<td>Liu, Zhi</td>
<td>0U, 49</td>
</tr>
<tr>
<td>Long, Jiachuan</td>
<td>3T</td>
</tr>
<tr>
<td>Long, Jiao</td>
<td>2M, 40</td>
</tr>
<tr>
<td>Long, Xianzhang</td>
<td>4R, 6W</td>
</tr>
<tr>
<td>Long, Xin</td>
<td>6B</td>
</tr>
<tr>
<td>Lou, Ping</td>
<td>09</td>
</tr>
<tr>
<td>Lou, Songjiang</td>
<td>1T</td>
</tr>
<tr>
<td>Lou, Jingxuan</td>
<td>42, 51</td>
</tr>
<tr>
<td>Lu, Bing</td>
<td>03</td>
</tr>
<tr>
<td>Lu, Chun</td>
<td>6X</td>
</tr>
<tr>
<td>Lu, Guanhuang</td>
<td>3J, 3L, 4W</td>
</tr>
<tr>
<td>Lu, Ruqian</td>
<td>6E</td>
</tr>
<tr>
<td>Lu, Tongwei</td>
<td>26, 27</td>
</tr>
<tr>
<td>Lu, Xiaobu</td>
<td>0X, 1K, 1Y, 39, 42</td>
</tr>
<tr>
<td>Lu, Ziwei</td>
<td>33</td>
</tr>
<tr>
<td>Lu, Zongqing</td>
<td>1C, 4J</td>
</tr>
<tr>
<td>Łukomski, M.</td>
<td>21, 62</td>
</tr>
<tr>
<td>Luo, Guibao</td>
<td>1J</td>
</tr>
<tr>
<td>Luo, Yupin</td>
<td>04</td>
</tr>
<tr>
<td>Lv, Xuefeng</td>
<td>6U</td>
</tr>
<tr>
<td>Ma, Caifeng</td>
<td>5M</td>
</tr>
<tr>
<td>Ma, Hongjin</td>
<td>2C</td>
</tr>
<tr>
<td>Ma, Ling</td>
<td>5A</td>
</tr>
<tr>
<td>Ma, Xing</td>
<td>0G, 0K</td>
</tr>
<tr>
<td>Ma, Xinxing</td>
<td>0Q</td>
</tr>
<tr>
<td>Ma, Xiuli</td>
<td>1S</td>
</tr>
<tr>
<td>Ma, Yanghui</td>
<td>1T</td>
</tr>
</tbody>
</table>

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Nov 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Ma, Yufeng, 25
Maksimov, Aleksei, 4E
Mao, Dong, 3O
Mei, Xue, 45
Ming, Yiming, 2S
Mo, Ruihong, 3U
Mozgovoy, Dmitriy, 0H
Mu, Chengpo, 17
Mu, Chunyang, 0G, 0K
Mu, Dejun, 5S
Mu, Xiao-dong, 4V
Nema, Anant, 5H
Nie, Guhong, 0B
Nie, Hewen, 4N
Nie, Xin, 26
Nie, Yufeng, 2C
Niu, Wenjie, 60
Niu, Xin, 0B
Niu, Zhaodong, 1W
Pan, Qianqian, 2N
Pan, Ting, 3Y
Pan, Weidong, 5L
Pang, Zhiguo, 4Z, 51
Peng, Changzhe, 3H
Peng, Kangbo, 20
Peng, Yong Kong, 1Q
Przybył, J., 4F, 6V
Przybył, K., 21, 4F, 62, 6V
Qi, Haifeng, 44
Qi, Jiajia, 3P
Qi, Lin, 3A, 61, 63
Qi, Yi, 72
Qian, Tingting, 3L, 4W
Qian, Yiming, 2S
Qiang, Ji-Peng, 0A
Qiao, Baowen, 4U
Qiao, FengXiang, 2O
Qiao, Kai, 5I
Qiao, Rui, 54
Qiao, Yulong, 2Y
Qi, Hailong, 2X
Qi, Rongchao, 0Q
Qi, Shaohua, 0O
Qi, Song, 34
Qi, Wenhui, 6X
Qu, Wei, 4Z, 51
Rao, Xin, 61
Ren, Rong, 35, 38
Ren, Shaoqian, 2D
Ren, Yi, 3I
Ren, Zifeng, 6H
Ruan, Min, 0A
Ruan, Zhimin, 3D
Rumyantsev, Konstantin, 32, 3C
Saruta, Kazuki, 5D
Seo, Seung-Yeon, 6L
Sergeyev, V. V., 4H
Shang, Zhuowen, 3T
Shao, Shihai, 1M
Shao, Yuyang, 1D
Shao, Zhanjian, 2F
Shen, Chao, 08, 5M
Shen, Weimin, 3K, 6J
Shen, Xiao-Bo, 0A
Sheng, Jinhui, 2Y
Sheng, Qinhua, 2F
Shi, Dapeng, 5I
Shi, Feng, 54
Shi, Jinglei, 14
Shi, Shaoying, 3R, 3S
Si, Jinging, 4C
Ślósarz, P., 4F, 6V
Song, Chul-Gyu, 6L
Song, Xin, 0E
Song, Yuwei, 7I
Song, Zongzi, 0B, 2E, 5M
Srinivasan, Kathiravan, 5H
Su, Bin-Bin, 2Q
Su, Xiaoping, 0V
Sun, Bo, 1N
Sun, Chao, 0Q
Sun, Jiande, 44
Sun, Jun, 03
Sun, Li, 34
Sun, Shouhong, 0W, 52
Sun, Shouhong, 0W, 52
Sun, Shouhong, 0W, 52
Sun, Wen, 45
Sun, Yannan, 6U
Sun, Yanru, 0U
Sun, Yong, 6Q
Sun, Yuxuan, 57
Sun, Zaoyu, 2I
Tan, Hongna, 5I
Tan, Linglong, 3G
Tan, Wenjun, 5B
Tan, Yanan, 42
Tan, Yong, 2T
Tao, Rui, 5C
Tao, Tao, 0X
Tao, Ting, 4J
Tao, Huanjie, 42
Tao, Renzuo, 59
Tao, Wang, 2G
Tao, Wenbing, 14, 2V
Tan, Xiaolin, 22, 5C
Tie, Yun, 1R, 3A, 63
Touafria, Mohamed, 0J
Tsai, Zhi-Ren, 0S
Tu, Zhigang, 2A
Vasyliev, Valodymyr, 0H
Vateekul, Peerapon, 5P
Wan, Changsheng, 0V
Wan, Jianwei, 0M
Wan, Jiayi, 5V
Wan, Shouhong, 0W, 52
Wan, Wenbo, 44
Yang, Lei, 47
Yang, Qiang, 0J
Yang, Qiliang, 16
Yang, Wenming, 0R, 4S
Yang, Yonghong, 6R
Yang, Yongyuan, 5E
Yang, Yu, 17
Yang, Yuan-qing, 18
Yang, Z., 64
Yang, Zhicheng, 24, 2X
Yang, Zhou, 4V
Yao, Min, 3T
Yao, Peng, 61
Yao, Ying, 23
Ye, Fan, 2L
Ye, Long, 1R, 46
Ye, Zhen, 0C, 6M
Ye, Zhongfu, 1B
Ye, Zuochang, 0Z
Yi, Hongwei, 4G
Yi, Peng, 60
Yin, Fei, 5M
Yin, Wei, 27
Yin, Xiaoli, 60
Yu, Anxi, 2I
Yu, Bing, 02
Yu, Feihong, 2H
Yu, Hongli, 6K
Yu, Jie, 66
Yu, Liangbing, 4N
Yu, Mingjun, 5Y
Yu, Shanyang, 6R
Yu, Shaode, 40, 4Q
Yu, Tianhe, 3Y, 3Y
Yu, Xiaosheng, 33
Yu, Xiaoyong, 2E
Yu, Yang, 5L
Yu, Yanling, 6G
Yu, Yue, 6D
Yu, Zhezhou, 3V
Yuan, Bo, 3J
Yuan, Lijie, 3A
Yuan, Qing-shu, 6D
Yuan, Rulfeng, 2R
Yuan, Xiaobin, 2E
Yuan, Yun-Hao, 0A
Yue, Jiang, 1F, 2K
Yue, Zihui, 4M
Zaborowicz, M., 21, 4F, 62, 6V
Zeng, Chuangzhan, 3I, 5U
Zeng, Lei, 5I
Zeng, Xiangrong, 6B
Zeng, Xiaoshuang, 4Y
Zeng, Yadong, 0T
Zeng, Yong, 4L, 5K
Zeng, Zhengda, 4S
Zhao, Jia, 43
Zhao, You, 07
Zhao, Bin, 5X
Zhao, Chao, 05
Zhang, Chenlu, 11
Zhang, Chongyang, 12
Zhang, Fan, 3G, 5K
Zhang, Fuxu, 6C
Zhang, Ge, 6E
Zhang, Guodong, 2P, 57, 5G
Zhang, Guoliang, 71
Zhang, Hailong, 47
Zhang, Hao, 1E, 2M, 40
Zhang, Jiaohao, 43
Zhang, Jiashu, 2M, 40
Zhang, Jin, 45
Zhang, Jiuxing, 4X
Zhang, Lin, 3R, 3S
Zhang, Ling, 30
Zhang, Linke, 4T
Zhang, Livai, 2N
Zhang, Longfei, 4D
Zhang, Mengmeng, 0U, 49
Zhang, Pengchang, 5Z
Zhang, Qi, 19
Zhang, Qiang, 43
Zhang, Qin, 46
Zhang, Rui, 2X, 50
Zhang, Ruijun, 6R
Zhang, Si-Yu, 5R
Zhang, Tian, 0I
Zhang, Wanwan, 5G
Zhang, Wei, 4X
Zhang, Weimin, 3U
Zhang, Wenbo, 6G
Zhang, Wengang, 49
Zhang, Xianfu, 1V
Zhang, Xin, 6A
Zhang, Xingguo, 5D
Zhang, Xinyu, 2S
Zhang, Xu, 6Q
Zhang, Xurui, 1V
Zhang, Yan, 70
Zhang, Yang, 1K, 2L
Zhang, Yating, 6B
Zhang, Yating, 6B
Zhang, Zhicheng, 4O
Zhang, Zhi, 34
Zhang, Zuoli, 1C
Zhao, Dazhe, 58
Zhao, Feng-an, 4V
Zhao, Guorui, 2Z
Zhao, Haiying, 2L
Zhao, Hui, 30
Zhao, Junhao, 43
Zhao, Tong, 4U, 55, 5J
Zhao, Wengang, 49
Zhao, Xiaofeng, 2U
Conference Committee

Honorary Chairs

Yongqi Xue, Shanghai Institute of Technical Physics of the Chinese Academy of Sciences (China)
Junhao Chu, East China Normal University (China)

International Advisory Committee

Chin-Chen Chang, Feng Chia University (Taiwan, China)
Osamu Matoba, Kobe University (Japan)

Conference Chairs

Pengfei Shi, Shanghai Jiaotong University (China)
Yue Lv, East China Normal University (China)
Xudong Jiang, Nanyang Technological University (Singapore)
Jenq-Neng Hwang, University of Washington (United States)

Program Committee Chairs

Qingli Li, East China Normal University (China)
Jamshid Dehmeshki, Kingston University (United Kingdom)
Konstantin Rumyantsev, Southern Federal University (Russian Federation)
Ismail Rakip Karas, Karabük University (Turkey)

Publicity Chairs

Yuri Rzhanov, University of New Hampshire (United States)
Piotr Boniecki, Poznan University of Life Sciences (Poland)
Krzysztof Koszela, Poznan University of Life Sciences (Poland)

Technical Committee

Liming Zhang, University of Macau (Macao, China)
Jinfeng Yang, Civil Aviation University of China (China)
Yong-Sheng Chen, National Chiao Tung University (Taiwan, China)
Tarek Sobh, University of Bridgeport (United States)
Mueller Wojciech, Poznan University of Life Sciences (Poland)
Srikanta Murthy, PES School of Engineering (India)
Radosław Jan Kozłowski, Poznan University of Life Sciences (Poland)
Gniewko Niedbała, Poznan University of Life Sciences (Poland)
Hongzhi Wu, Shandong Institute for Development Strategy of Science and Technology (China)
Bo Qiang, TaiYuan Satellite Launch Center (China)
Zhangjin Huang, University of Science and Technology of China (China)
Qing Zhu, Beijing University of Technology (China)
András Horváth, Peter Pazmany Catholic University (Hungary)
Feifei Tang, Chongqing Jiaotong University (China)
Zhu Li, Hangzhou Dianzi University (China)
Bin Li, University of Science and Technology of China (China)
Fengying Xie, Beihang University (China)
Jiande Sun, Shandong Normal University (China)
Songjiang Lou, Zhejiang University of Science and Technology (China)
Guoyou Wang, Huazhong University of Science and Technology (China)
Songtao Liu, Dalian Naval Academy (China)
Qingsheng Liu, Chinese Academy of Sciences (China)
Volodymyr Hnatushenko, Oles Gonchar Dnipro National University (Ukraine)
Dmitriy Mozgovoy, Oles Gonchar Dnipro National University (Ukraine)
Ling Ma, Zhengzhou University (China)
Youdong Ding, Shanghai University (China)
Guoye Chen, Akita Prefectural University (Japan)
Guanzhen Yu, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (China)
Guodong Zhang, Shenyang Aerospace University (China)
Kyeong-Seop Kim, Kon-kuk University (Korea, Republic of)
Ruijun Zhang, Wuhan University of Science and Technology (China)
Yong Wang, Harbin Institute of Technology (China)
Vladislav Sergeyev, Samara National Research University (Russian Federation)
Fan Zhang, Anhui Xinhua University (China)
Houde Dai, Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, CAS (China)
Zhenzhou Yu, Jilin University (China)
Jun Cai, Anhui University of Science and Technology (China)
Hung-Min Sun, National Tsing Hua University (Taiwan, China)
Xuefeng Lv, National Disaster Reduction Center of China (China)
Xiaoying Wang, Qinghai University (China)
Zheng Han, Chifeng University (China)
Zhen Ye, Chang’an University (China)
Introduction

We had the great honor of organizing the Tenth International Conference on Digital Image Processing (ICDIP 2018). It was truly a great pleasure for us to greet more than 280 participants from many different countries. We firmly believe that ICDIP will become an important international event in the field of Digital Image Processing.

The Tenth International Conference on Digital Image Processing (ICDIP 2018) was co-sponsored by Shanghai Key Laboratory of Multidimensional Information Processing (China) and International Association of Computer Science and Information Technology (Singapore, hosted by East China Normal University (China), and technically assisted by many universities and institutes.

The objective of this conference was to provide a platform for the participants to report and exchange innovative ideas, up-to-date progress and developments, and discuss novel approaches to application in the digital image processing field. It is sincerely hoped that the research and development in digital image processing will be improved, and the international collaboration with common interest sharing will be enhanced.

On behalf of other co-chairs, and the organization committee of ICDIP 2018, we would like to express our heartfelt thanks to our sponsors and cooperating organizers for all they have done. Thanks also go to all the authors for their contributions to the proceedings, to all of the participants and friends for their interest and efforts in helping us to make it possible, to the program technical committee for their effective work and valuable advice, especially the conference secretary, and to the staff at SPIE for their tireless efforts and outstanding service in preparing and publishing the proceedings.

Xudong Jiang
Jenq-Neng Hwang