Front Matter: Volume 10737
Organic, Hybrid, and Perovskite Photovoltaics XIX

Zakya H. Kafafi
Paul A. Lane
Kwanghee Lee

Editors

20–23 August 2018
San Diego, California, United States

Sponsored by
SPIE

Cosponsored by
RISE (Research Institute for Solar and Sustainable Energies) in GIST (Korea, Republic of)
MSWAY Co., Ltd. (Korea, Republic of)

Published by
SPIE

Volume 10737
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>vi</td>
<td>Conference Committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOWARDS COMMERCIALIZATION AND UPSCALING OF ORGANIC, HYBRID, AND PEROVSKITE PHOTOVOLTAICS</td>
<td></td>
</tr>
<tr>
<td>10737 0G</td>
<td>Creating a bright future in flexible solar cells (Invited Paper)</td>
<td>[10737-14]</td>
</tr>
<tr>
<td>10737 0H</td>
<td>Towards upscaling of organic photovoltaics using non-fullerene acceptors</td>
<td>[10737-15]</td>
</tr>
<tr>
<td></td>
<td>BEYOND BUCKYBALLS: ORGANIC PHOTOVOLTAICS WITH NONFULLERENE ACCEPTORS</td>
<td></td>
</tr>
<tr>
<td>10737 0N</td>
<td>Environment friendly solvent processed, fullerene-free organic solar cells with high efficiency in air</td>
<td>[10737-22]</td>
</tr>
<tr>
<td></td>
<td>HIGH PERFORMANCE PEROVSKITE-BASED SOLAR CELLS</td>
<td></td>
</tr>
<tr>
<td>10737 0T</td>
<td>Understanding the impact of carrier mobility and mobile ions on perovskite cell performance (Invited Paper)</td>
<td>[10737-27]</td>
</tr>
<tr>
<td></td>
<td>MORPHOLOGY AND NANOSTRUCTURES OF ORGANIC, HYBRID, AND PEROVSKITE PHOTOVOLTAICS</td>
<td></td>
</tr>
<tr>
<td>10737 14</td>
<td>Nanoimaging of local photocurrent in hybrid perovskite solar cells via near-field scanning photocurrent microscopy</td>
<td>[10737-37]</td>
</tr>
<tr>
<td></td>
<td>NEW APPROACHES AND DESIGN FOR HIGH EFFICIENCY ORGANIC, HYBRID, AND PEROVSKITE PHOTOVOLTAICS</td>
<td></td>
</tr>
<tr>
<td>10737 11</td>
<td>Toward high-efficiency solution-processed tandem solar cells</td>
<td>[10737-51]</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>10737 1X</td>
<td>Photoelectronic properties of lead-free CH₃NH₃SnI₃ perovskite solar cell materials and devices</td>
<td>[10737-67]</td>
</tr>
<tr>
<td>10737 23</td>
<td>Investigation of device performance due to inclusion of Ru and Pt based heavy metals in organometallic solar cells</td>
<td>[10737-74]</td>
</tr>
<tr>
<td>10737 2H</td>
<td>Effect on the micro-electrical behavior of organic photovoltaics under post-thermal annealing</td>
<td>[10737-91]</td>
</tr>
<tr>
<td>10737 2Q</td>
<td>Active thin film variation in OPV cells and analysis through external and internal quantum efficiency</td>
<td>[10737-101]</td>
</tr>
<tr>
<td>10737 2S</td>
<td>Effect of thermal annealing on the structure of the small molecule (electro-donor) DRCN5T: tunneling spectroscopies analysis</td>
<td>[10737-103]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Adhikari, Nirmal, 23
Aharen, Tomoko, 1X
Amargós-Reyes, Olivia, 2Q
Barreiro-Argüelles, Denisse, 2Q
Caballero-Quintana, Irving, 2S
Califórnia, A., 2H
Catchpole, Kylie, 0T
Cieplechowicz, Edward, 0H
Dayneko, Sergey V., 0N
Di, Dawei, 11
Fell, Andreas, 0T
Gaspar, Jorge A., 2Q
Gomes, J., 2H
Greenham, Neil C., 11
Ha, Dongheon, 14
Handa, Takeo, 1X
Haney, Paul M., 14
Harding, Cayley R., 0H
Hendsbee, Arthur D., 0N
Kanemitsu, Yoshihiko, 1X
Karani, Arfa, 11
Khatiwada, Devendra, 23
Kumar, M., 2H
Laventure, Audrey, 0H
Maldonado, José-Luis, 2Q, 2S
Mitul, Abu Farzan, 23
Mohammad, Lal, 23
Pan, Huadong, 0G
Park, Ik Jae, 14
Pereira, L., 2H
Qiao, Qiquan, 23
Reis, S., 2H
Romero-Borja, Daniel, 2Q, 2S
Sarker, Jith, 23
Uddin, Nezam, 23
Wakamiya, Atsushi, 1X
Walter, Daniel, 0T
Wang, Qi, 23
Weber, Klaus, 0T
Welch, Gregory C., 0H, 0N
White, Tom, 0T
Woody, Kathy B., 0G
Worfolk, Brian J., 0G
Wu, Nandi, 0T
Yang, Le, 11
Yoon, Yohan, 14
Zhitenev, Nikolai B., 14
Conference Committee

Symposium Chairs
 Zakya Kafafi, Lehigh University (United States)
 Ifor D. W. Samuel, University of St. Andrews (United Kingdom)

Conference Chairs
 Zakya H. Kafafi, Lehigh University (United States)
 Paul A. Lane, NSF (Professional Development) (United States)
 Kwanghee Lee, Gwangju Institute of Science and Technology (Korea, Republic of)

Conference Program Committee
 Hendrik Bolink, Universidad de València (Spain)
 Paul L. Burn, The University of Queensland (Australia)
 David S. Ginger, University of Washington (United States)
 Fei Huang, South China University of Technology (China)
 Gang Li, The Hong Kong Polytechnic University (Hong Kong, China)
 Thuc-Quyen Nguyen, University of California, Santa Barbara (United States)
 Ana Flavia Nogueira, Universidade Estadual de Campinas (Brazil)
 Hideo Ohkita, Kyoto University (Japan)
 Barry P. Rand, Princeton University (United States)
 Ifor D. W. Samuel, University of St. Andrews (United Kingdom)
 Natalie Stingelin-Stutzmann, Georgia Institute of Technology (United States)
 Huanping Zhou, Peking University (China)
 Xiaoyang Zhu, Columbia University (United States)

Session Chairs
 1 Physical Chemistry of Semiconductor Materials and Interfaces &
 Organic, Hybrid, and Perovskite PVs:
 Joint Session with Conferences 10724 and 10737
 Hugo A. Bronstein, University of Cambridge (United Kingdom)
 Paul A. Lane, NSF (Professional Development) (United States)

 2 Organic, Hybrid and Perovskite Photovoltaics: Status and Challenges
 Paul A. Lane, NSF (Professional Development) (United States)
3 Charge Transfer and Transport in Organic, Hybrid, and Perovskite Photovoltaics
Ifor D.W. Samuel, University of St. Andrews (United Kingdom)

4 Towards Commercialization and Upscaling of Organic, Hybrid, and Perovskite Photovoltaics
Kwanghee Lee, Gwangju Institute of Science and Technology (Korea, Republic of)

5 Beyond Buckyballs: Organic Photovoltaics with Nonfullerene Acceptors
Paul A. Lane, NSF (Professional Development) (United States)

6 High Performance Perovskite-Based Solar Cells
Sean E. Shaheen, University of Colorado Boulder (United States)

7 Stability and Lifetime of Perovskites-Based Solar Cells
Ana Flavia Nogueira, Universidade Estadual de Campinas (Brazil)

8 Morphology and Nanostructures of Organic, Hybrid, and Perovskite Photovoltaics
Harald W. Ade, North Carolina State University (United States)

9 New Materials for Organic Photovoltaics
Paul L. Burn, The University of Queensland (Australia)

10 New Approaches and Design for High Efficiency Organic, Hybrid, and Perovskite Photovoltaics
Gang Li, The Hong Kong Polytechnic University (Hong Kong, China)