Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications

Tien Pham
Editor

15–17 April 2019
Baltimore, Maryland, United States

Sponsored and Published by
SPIE

Volume 11006

Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications
edited by Tien Pham, Proc. of SPIE Vol. 11006, 1100601 · © 2019 SPIE
CCC code: 0277-786X/19/$18 · doi: 10.1117/12.2537937

Proc. of SPIE Vol. 11006 1100601-1

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
Contents

<table>
<thead>
<tr>
<th>Index</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>xii</td>
<td>Conference Committee</td>
<td></td>
</tr>
</tbody>
</table>

AI/ML MULTI-DOMAIN OPERATIONS (MDO)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11006.02</td>
<td>Operationalizing artificial intelligence for multi-domain operations: a first look (Invited Paper)</td>
<td>[11006-1]</td>
</tr>
<tr>
<td>11006.04</td>
<td>Dynamic data driven analytics for multi-domain environments</td>
<td>[11006-4]</td>
</tr>
<tr>
<td>11006.05</td>
<td>Theoretical development of multi-domain command and control</td>
<td>[11006-5]</td>
</tr>
<tr>
<td>11006.06</td>
<td>Federated machine learning for multi-domain operations at the tactical edge (Invited Paper)</td>
<td>[11006-73]</td>
</tr>
</tbody>
</table>

CONTEXT-VOI/TRUST

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11006.07</td>
<td>Representing and reasoning over military context information in complex multi domain battlespaces using artificial intelligence and machine learning</td>
<td>[11006-6]</td>
</tr>
<tr>
<td>11006.08</td>
<td>Dependable machine intelligence at the tactical edge</td>
<td>[11006-7]</td>
</tr>
<tr>
<td>11006.09</td>
<td>Vol for complex AI based solutions in coalition environments</td>
<td>[11006-8]</td>
</tr>
</tbody>
</table>

ENABLING CAPABILITIES FOR AI/ML

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11006.0B</td>
<td>Design and implementation of the U.S. Army Artificial Intelligence Innovation Institute (Invited Paper)</td>
<td>[11006-10]</td>
</tr>
<tr>
<td>11006.0D</td>
<td>Automated information foraging for sensemaking</td>
<td>[11006-12]</td>
</tr>
<tr>
<td>11006.0E</td>
<td>Data column prediction: experiment in automated column tagging using machine learning</td>
<td>[11006-13]</td>
</tr>
<tr>
<td>11006.0F</td>
<td>Reducing the cost of visual DL datasets</td>
<td>[11006-14]</td>
</tr>
<tr>
<td>11006.0G</td>
<td>A conceptual architecture for contractual data sharing in a decentralised environment</td>
<td>[11006-15]</td>
</tr>
<tr>
<td>11006 OH</td>
<td>An analysis on data curation using mobile robots for learning tasks in complex environments [11006-16]</td>
<td></td>
</tr>
<tr>
<td>11006 OI</td>
<td>How to make a machine learn continuously: a tutorial of the Bayesian approach [11006-17]</td>
<td></td>
</tr>
<tr>
<td>11006 OJ</td>
<td>Towards a learning-algorithm agnostic generative policy model for coalitions [11006-18]</td>
<td></td>
</tr>
<tr>
<td>11006 OK</td>
<td>Comprehensive cooperative deep deterministic policy gradients for multi-agent systems in unstable environment [11006-19]</td>
<td></td>
</tr>
</tbody>
</table>

HUMAN INFORMATION INTERACTION: ADVANCED CONCEPTS

11006 OL	Uncertainty-aware situational understanding [11006-20]
11006 OM	Agent based simulation of decision making with uncertainty [11006-21]
11006 ON	Application of data science within the Army intelligence warfighting function: problem summary and key findings [11006-22]
11006 OO	Computational tools to support analysis and decision making [11006-23]
11006 OP	Managing training data from untrusted partners using self-generating policies [11006-24]

HUMAN AGENT TEAMING I

11006 OR	Partnering with technology: the importance of human machine teaming in future MDC2 systems [11006-25]
11006 OS	Grounding natural language commands to StarCraft II game states for narration-guided reinforcement learning [11006-26]
11006 OT	Improving motion sickness severity classification through multi-modal data fusion [11006-27]
11006 OU	Investigating immersive collective intelligence [11006-28]
11006 OV	Intelligent squad weapon: challenges to displaying and interacting with artificial intelligence in small arms weapon systems [11006-29]
Proc. of SPIE Vol. 11006 1100601-5	
---|---|

HUMAN AGENT TEAMING II

11006 0 W *Classification of military occupational specialty codes for agent learning in human-agent teams* [11006-31]

11006 0 X *Achieving useful AI explanations in a high-tempo complex environment* [11006-32]

11006 0 Y *A framework for enhancing human-agent teamwork through adaptive individualized technologies* [11006-33]

11006 0 Z *Effect of cooperative team size on coordination in adaptive multi-agent systems* [11006-34]

11006 10 *Developing the sensitivity of LIME for better machine learning explanation* [11006-55]

NOVEL AI/ML ALGORITHMS

11006 11 *Intelligence augmentation for urban warfare operation planning using deep reinforcement learning* [11006-35]

11006 12 *Super-convergence: very fast training of neural networks using large learning rates* [11006-36]

11006 13 *An efficient approximate algorithm for achieving (k −ω) barrier coverage in camera wireless sensor networks* [11006-37]

11006 14 *Algorithmically identifying strategies in multi-agent game-theoretic environments* [11006-38]

11006 15 *A rapid convergent genetic algorithm for NP-hard problems* [11006-39]

11006 16 *Identifying maritime vessels at multiple levels of descriptions using deep features* [11006-40]

11006 17 *Super resolution-assisted deep aerial vehicle detection* [11006-41]

11006 18 *Using convolutional neural network autoencoders to understand unlabeled data* [11006-42]

11006 19 *Bayesian learning of random signal distributions in complex environments* [11006-70]

ADVERSARIAL LEARNING

11006 1 C *Defending against adversarial attacks in deep neural networks* [11006-45]

11006 1 D *Model poisoning attacks against distributed machine learning systems* [11006-46]

11006 1 E *Steps toward a principled approach to automating cyber responses* [11006-47]
AI/ML APPLICATIONS

11006 1F	DAIS-ITA scenario [11006-3]
11006 1G	Towards building actionable indicators of compromise based on a collaboration model [11006-48]
11006 1H	Radar emitter and activity identification using deep clustering methods [11006-49]
11006 1I	Approaches to address the data skew problem in federated learning [11006-50]
11006 1J	Experience and lessons learned from the Army RCO Blind Signal Classification Competition [11006-52]

POSTER SESSION

11006 1K	Properties of federated averaging on highly distributed data [11006-51]
11006 1L	Beyond validation accuracy: incorporating out-of-distribution checks, explainability, and adversarial attacks into classifier design [11006-53]
11006 1M	Image quality and super resolution effects on object recognition using deep neural networks [11006-54]
11006 1O	Security engineering with machine learning for adversarial resiliency in cyber physical systems [11006-59]
11006 1P	On the machine learning for minimizing the negative influence in mobile cyber physical systems [11006-60]
11006 1Q	Deep adversarial attack on target detection systems [11006-61]
11006 1R	How to practically deploy deep neural networks to distributed network environments for scene perception [11006-62]
11006 1S	Machine learning using template matching applied to object tracking in video data [11006-63]
11006 1T	Overview of machine learning (ML) based perception algorithms for unstructured and degraded visual environments [11006-64]
11006 1U	Reducing bathymetric-lidar algorithm uncertainty with genetic programming and the evolutionary multi-objective algorithm design engine [11006-65]
11006 1W	Understanding of multi-domain battle challenges: AI/ML and the day/night thermal variability of targets [11006-67]
11006 1X	Machine learning based spectral interpretation in chemical detection [11006-68]
Radio frequency classification toolbox for drone detection [11006-69]

Contingent attention management in multitasked environments [11006-72]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdelzaher, Tarek, 08
Abu Jabal, Amani, 0P
Almad, Izzat, 1G
Applebaum, Andy, 1E
Ashdown, Jonathan, 04
Asher, Derik E., 0W, 0Z, 14
Bakdash, Jonathan, 0V
Barclay, Iain, 0G
Barton, Sean, 0S, 0W, 0Z, 14
Bello, Abdulkabir, 1Y
Berthiaume, Megan, 0V
Bertino, Elisa, 0J, 0P
Binh, Huynh Thi Thanh, 13
Binh, Nguyen Thi My, 13
Biswal, Biswajit, 1Y
Boslaugh, Jason, 0N
Boyd, Peter, 07
Braines, David, 0X, 10, 1F
Breton, Daniel, 19
Brock, Derek, 20
Bui, Xuan, 0I
Calo, Seraphin, 0J, 0P
Carr, Domenic, 1I
Caylar, Justine, 0W
Cerutti, Federico, 0L
Chakraboty, Supriyo, 0X, 11
Chan, Kevin S., 07, 1D
Chaudhary, Vijay, 1P
Cillincione, Gregory, 06, 0B, 0P, 11
Clarke, Greg, 1H
Coles, John, 0E, 0N
Crane, Jason, 0S
Cropp, B., 0E
Cunnington, Daniel, 0J
de Heer, Paolo B. U. L., 11
de Mel, Geeth, 09, 0J, 0P
de Reus, Nico M., 11
DeCostanzo, Arwen H., 0Y
Del Vecchio, J., 0E
Demikson, Mark, 0T, 0U
Desai, Nirmil, 1K
Deshpande, Samir V., 1X
Dibona, Phil, 0D
Dominguez, C., 0R

Donlon, Julia, 0H
Donlan, Stephen, 02
D’Mura, Mike, 0T
Edmonds, Bill, 1E
Edwards, Samuel, 18
Eklund, Jacob, 0E, 0N
Ferdous, Syeda Nyma, 17
Fischer, Gregory, 0B
Fitzhugh, Sean M., 0Y
Foot, Hesham, 20
Ganger, Robert, 0N
Garuba, Moses, 1O
Geuss, Michael N., 0V
Gold, Kimberly, 1Y
Hamrahy, Timothy, 0N, 0U
Harborne, Daniel, 0X, 10
Harlow, Andre, 0T
Hayes, Cory, 0H
Heidman, Eric, 0N, 0U
Henderson, Troy A., 1S
Heye, David B., 0E
Ho, Shen-Shyang, 0D
Hoffman, Blaine, 14
Huang, Yan, 0K
Hudler, Adam, 10
Hussel, Ilam, 0S
Hyatt, John, S., 1J, 1L
Jayaratne, Kasihur, 08
Johnson, Nicholas, 1H
Judd, Gregory B., 07
Juliet, Simon, 11
Kamhoua, Charles, 0G, 10, 1Y
Kaplan, Lance, 0L
Kaukel, Ian, 0F
Kendrick, Zachary, 0N
Kerbusch, Philip J. M., 11
Kimmel, Angelika, 0L
Klamm, J., 0R
Kopatsioupolos, Fofis, 04
Kuo, C-C, Jay, 1C
Kwon, Heesung, 0R, 0T
Ladas, Andrew, 0B
Lance, Brent, 0V
Larkin, Gabriella, 0V
Law, Mark, 0J
Lawhern, Vernon, 0S
Lee, Eunjin, 10
Lee, Hyungtae, 1R
Lee, Michael S., 0T, 18, 1J, 1L

ix
Lenox, M., OR
Leslie, Nandi, 1G
Loi, Vu Le, 13
Mainieri, Ronnie, 05
Manotas, Irene, 0J, 0P
Marcus, Kevin, 07
Marez, Diego, 1H
McCabe, S., 0E
McDermott, P., 0R
Mcmullen, Sonya A. H., 1S
Metu, Somiya, 0M
Miwa, Archan, 08
Mitrlick, Mark, 0U
Mifti, Ranjeev, 02
Mastroi, Moktar, 17
Musman, Scott, 1E
Narayanan, Piyta, 1T
Nasrabadi, Nasser M., 17, 1Q
Newkirk, Richard, 04
Nghia, Vu Trung, 13
Ngo Van, Uinh, 01
Nguyen, Son, 01
Nguyen-Duc, Anh, 01
Nguyen-Trong, Tung, 04
Olowononi, Felix O., 10
Oren, Liel, 15
Osahor, Uche M., 1Q
Ostashev, Vladimir E., 19
Osteen, Philip R., 0F
Owens, Jason L., 0F
Pasteris, Stephen, 1I
Pearson, Gavin, 09, 0P
Perelman, Brandon, 14
Petit, Chris L., 19
Pham, Tien, 08
Poneson, Simon, 1F
Pike, Thomas D., 0O
Preece, Alun, 0G, 0L, 0X
Radonovic, Vanja, 07
Raglin, Adrienne, 0M, 0T
Rao, Raghuveer, 1T
Rass, Patrick, 1W
Rawat, Danda B., 1O, 1P
Reeder, John, 1H
Richardson, John, 0U
Rick, James, 1U
Riley, Patrick C., 1X
Rivera, Biyan, 1F
Rodriguez, Sebastian S., 14
Rohling, Gregory, 1U
Rosaio, Dalton, 1W
San, Dang Lam, 13
Schaffer, James A., 14
Şensoy, Murat, 0L
Shafry, Sachin, 1Y
Smith, Leslie N., 12
Spencer, David K., 02
Stanton, Biyan, 0B
Steffler, Mitchell, 10
Stump, Ethan, 05
Sullivan, Paul, 0L, 1F
Swami, Ananthram, 0P
Swoboda, Jennifer, 0V
Szabo, Claudia M., 07
Talebi, Rood, 1U
Tallaferr, Adam, 02
Tandifaryah, Randy, 08
Taylor, Ian, 0G
Tealdi, Lucia, 1I
Tesic, Jelena, 16
Than, Khoat, 0T
Thang, Chu Minh, 13
Thirer, Nonel, 15
Tomsett, Richard, 0L, 1D
Topin, Nicholas, 12
Tuoma, Maroun, 1F
Tran, Bach, 01
Trout, Teron, 0U
Truong, Khang, 0I
Valenta, Christopher, 1U
Varela, Carlos, 04
Vente, Daniel, 0L
Verma, Dinesh C., 06, 09, 0G, 0J, 0P, 11, 1K
Villamala, Marc Roig, 0L
Vindola, Manuel, 1J
Wang, Peng, 1J
Wang, Zhangyang, 1T
Ward, Dale, 07
Warran, Garrett, 0S
Warren, Nicholas, 16
Waytowich, Nicholas R., 0S, 0Z, 14
Weerakoon, Dulanga, 08
Webs, Lorraine, 05
White, Graham, 1F, 1I
White, Timothy, 0V
Wigness, Maggie, 0H
Wilbow, D. Keith, 19
Witherspoon, Shonda, 0P
Wu, Zhenyu, 1T
Xie, Dong, 0K
Yang, Qian, 0K
Yao, Shuchao, 08
Yost, B., 0R
You, Suya, 1C
Young, Matthew, 0H
Young, S. Susan, 1M
Yu, Alfred, 0V
Zaroukian, Erin G., 0W, 0Z, 14
Zhong, Xiangnan, 0K
Zuehlke, David A., 1S
Zutty, Jason, 1U
Conference Committee

Symposium Chairs

Jay Kumler, JENOPTIK Optical Systems, LLC (United States)
Ruth L. Moser, Air Force Research Laboratory (United States)

Symposium Co-chair

John Pellegrino, Electro-Optical Systems Laboratory, Georgia Institute of Technology (United States)

Conference Chair

Tien Pham, U.S. Army Research Laboratory (United States)

Conference Co-chair

Latasha Solomon, U.S. Army Research Laboratory (United States)

Conference Program Committee

Tarek Abdelzaher, University of Illinois (United States)
Erik Blash, Air Force Office of Scientific Research (United States)
Addison Bohannon, U.S. Army Research Laboratory (United States)
Kevin Chan, U.S. Army Research Laboratory (United States)
Supriyo Chakraborty, IBM Thomas J. Watson Research Center (United States)
Ed Colbert, Virginia Polytechnic Institute and State University (United States)
Geeth del Mel, IBM United Kingdom Ltd. (United Kingdom)
John Fossaceca, U.S. Army Research Laboratory (United States)
Tim Hanratty, U.S. Army Research Laboratory (United States)
Brian J. Henz, U.S. Army Research Laboratory (United States)
Brian Jalaian, U.S. Army Research Laboratory (United States)
Henry Leung, University of Calgary (Canada)
Gavin Pearson, Defence Science and Technology Laboratory (United Kingdom)
Alun D. Preece, Cardiff University (United Kingdom)
Katie Rainey, SPAWAR Systems Center Pacific (United States)
Brian Satterfield, Lockheed Martin Corporation (United States)
Peter Schwartz, Mitre (United States)
Dietrich Wiegmann, U.S. Army Research Laboratory (United States)
Robert Williams, Discovery Laboratory Global (United States)
Session Chairs

1 AI/ML Multi-Domain Operations (MDO)
 Tien Pham, U.S. Army Research Laboratory (United States)
 Latasha Solomon, U.S. Army Research Laboratory (United States)

2 Context-VOI/Trust
 Kevin S. Chan, U.S. Army Research Laboratory (United States)

3 Enabling Capabilities for AI/ML
 Katie Rainey, SPAWAR Systems Center Pacific (United States)

4 Learning in Complex Environments
 Alun D. Preece, Cardiff University (United Kingdom)
 Tarek Abdelzaher, University of Illinois (United States)

5 Human Information Interaction: Advanced Concepts
 Timothy P. Hanratty, U.S. Army Research Laboratory (United States)
 Addison W. Bohannon, U.S. Army Research Laboratory (United States)

6 Human Agent Teaming I
 Timothy P. Hanratty, U.S. Army Research Laboratory (United States)
 Addison W. Bohannon, U.S. Army Research Laboratory (United States)

7 Human Agent Teaming II
 Addison W. Bohannon, U.S. Army Research Laboratory (United States)
 Timothy P. Hanratty, U.S. Army Research Laboratory (United States)

8 Novel AI/ML Algorithms
 Robert Williams, Discovery Laboratory Global (United States)
 Brian Jalaian, U.S. Army Research Laboratory (United States)

9 Adversarial Learning
 Supriyo Chakraborty, IBM Thomas J. Watson Research Center
 (United States)
 Kevin S. Chan, U.S. Army Research Laboratory (United States)

10 AI/ML Applications
 Brian J. Henz, U.S. Army Research Laboratory (United States)
 Peter Schwartz, The MITRE Corporation (United States)