Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019

Anne-Sophie Poulin-Girard
Joseph A. Shaw
Editors

21–24 May 2019
Quebec City, Quebec, Canada

Sponsored by
ICO–International Commission for Optics
IEEE–The Photonics Society
The Optical Society
SPIE

Organized by
Université Laval (Canada)
Centre d’Optique, Photonique et Laser (Canada)

Published by
SPIE

Volume 11143
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Issn: 0277-786x
Issn: 1996-756x (electronic)
ISBN: 9781510629790

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) • Fax +1 360 647 1445
SPIE.org

Copyright © 2019, ICO, IEEE, OSA, and SPIE.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-first publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

xi Authors
xv Conference Committees
xix Introduction

EDUCATION THROUGH PUBLICATION AND RESEARCH

11143 03 Max Planck School of Photonics: research-oriented photonics education in a network of excellence throughout Germany [11143-161]

11143 04 Stringent and result-oriented training requirements at the heart of research funding opportunities: the case of the CSA FAST funding activity and the HiCIBaS project [11143-130]

11143 05 NSF's support for education and training of the optics and photonics workforce (Invited Paper) [11143-175]

11143 06 Concept and development of research-oriented education in the university context [11143-158]

11143 07 Engaging undergraduate students in the Philippines in photonics research with a novel publication-driven online mentoring approach [11143-131]

11143 08 Teaching undergraduate students integrated photonics and fabrication through research [11143-150]

TRAINING USING SPECIALIZED SOFTWARE AND PLATFORMS AS PRACTICAL TOOLS

11143 0A Demonstration polarization phenomenon and laser system simulation by software in university lecture course [11143-83]

11143 0D Teaching photonic integrated circuits with Jupyter notebooks: design, simulation, fabrication [11143-9]

11143 0E Teaching digital holography through an interface in Java [11143-19]

11143 0F Lidar: a new self-driving vehicle for introducing optics to broader engineering and non-engineering audiences [11143-138]

11143 0G Open source photonics at the Abbe School of Photonics: How Makerspaces foster open innovation processes at universities [11143-162]

11143 0H A free spectroscopic databank of optical constants for use in optics education and modeling: complex refractive index data n and k from 1.0 to 25 μm [11143-174]
OPTICS AND PHOTONICS EDUCATION IN DIVERSE, REMOTE OR UNDERPRIVILEGED COMMUNITIES

Interactive teaching methods of optoelectronics for enhancing engagement of under-represented groups [11143-144]

Optometry outreach for diverse middle school students [11143-156]

SOFTWARE: ENHANCING TECHNICAL TRAINING

Creating confident scientific writers engaged in productive writing and editing using a portfolio approach [11143-3]

CURRICULUM DEVELOPMENT AND IMPROVEMENT

Developing updated physical optics curriculum: incorporating the neglected reality of non-interaction of waves (NIW) [11143-16]

Integrating fiber optics into electronic communications curriculum [11143-18]

Undergraduate course on biomedical imaging at a liberal arts college [11143-26]

Quantum harmonic oscillator fluorescence [11143-61]

AR/VR FOR OPTICS AND PHOTONICS EDUCATION

Training in polarization through a virtual learning environment [11143-87]

Web-based interactive simulations and virtual lab for photonics education [11143-136]

ONLINE CLASSROOM AND REMOTE LEARNING

Integrated photonics and application-specific design on a massive open online course platform (Invited Paper) [11143-151]

Harnessing peer instruction in and out of class with myDALITE [11143-89]

Instructional design of problem-based teaching in Optical System Design course using informatization teaching resources [11143-125]
LABORATORY CURRICULUM AND EXPERIMENTS FOR HANDS-ON TRAINING I

11143 12 Studying the transition from light emitting diodes to semiconductor lasers in applied physics laboratories [11143-43]

11143 13 Laboratory training in silicon photonics for undergraduate and graduate students [11143-59]

11143 16 Some remarks of teaching "The Concepts in Experimental Optics" for students in natural sciences in Brazil [11143-17]

11143 17 CCCC and LASER-TEC educational Raman spectrometer demo [11143-141]

LABORATORY CURRICULUM AND EXPERIMENTS FOR HANDS-ON TRAINING II

11143 18 Public domain optics: experimental gems from pre-1923 textbooks (Invited Paper) [11143-153]

11143 19 Simple optical setup for the undergraduate experimental measurement of the refractive indices and attenuation coefficient of liquid samples and characterization of laser beam profile [11143-112]

11143 1A Quantum optics laboratories for teaching quantum physics [11143-123]

11143 1C A modular laboratory curriculum for teaching integrated photonics to students with diverse backgrounds [11143-142]

HANDS-ON EXPERIMENTS AND DEMONSTRATIONS FOR YOUNG AUDIENCES

11143 1D A tabletop line-of-sight stabilization demonstrator for STEM outreach activities [11143-24]

11143 1E The disassembly and re-purposing of unwanted consumer electronics: low-cost tools for optics outreach [11143-66]

11143 1F A tabletop adaptive optics demonstrator for STEM outreach activities [11143-25]

11143 1H A STEM outreach tool for demonstrating the sensing and compensation of atmospheric turbulence [11143-98]

OPTICS AND PHOTONICS CURRICULUM AND PROGRAMS

11143 1J Problem-based learning in advanced photonics manufacturing: bringing real-world applications to the classroom [11143-102]

11143 1K Photonics education in Switzerland on Bachelor and Master level triggered by industrial needs [11143-28]
A modular industry-centered program for photonics and integrated photonics certification

[11143-94]

OPTICS IN NATURE AND IN OUR SURROUNDINGS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light and lilacs: an interactive exploration of colorimetry</td>
<td>163</td>
</tr>
<tr>
<td>Astronomical events and their impact on knowledge transfer in optics and photonics</td>
<td>30</td>
</tr>
<tr>
<td>Near infrared photography of atmospheric optical phenomena</td>
<td>32</td>
</tr>
<tr>
<td>Extended visual range: an observation during a total solar eclipse</td>
<td>33</td>
</tr>
</tbody>
</table>

ART AND PHOTONICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art and photonics</td>
<td>45</td>
</tr>
<tr>
<td>When outreach in optics meets architecture: the optical terrace</td>
<td>105</td>
</tr>
</tbody>
</table>

INDUSTRY AND ACADEMIA INTERACTION IN EDUCATION II

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination optical education role of university for optical industry and efforts at Chiba Institute of Technology</td>
<td>114</td>
</tr>
<tr>
<td>The intricate and symbiotic relationship between educational institutions and the industry</td>
<td>146</td>
</tr>
<tr>
<td>The company at university laboratory like efficient means for training of future engineers</td>
<td>154</td>
</tr>
</tbody>
</table>

IN-PARTNERSHIP TRAINING AND INTERNSHIPS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry training on on-wafer optoelectronic vector network analysis</td>
<td>52</td>
</tr>
<tr>
<td>Apprenticeship: precision optics manufacturing technician</td>
<td>91</td>
</tr>
<tr>
<td>Construction of school-enterprise cooperation platform to improve the practical ability of professional degree master based on PBL mode</td>
<td>105</td>
</tr>
</tbody>
</table>
DEVELOPMENT OF MULTIDISCIPLINARY TRAINING PROGRAMS

11143 24 Optics education for multidisciplinary students: how to focus on the relationship between optical technology and human civilization in group discussion [11143-133]

11143 26 Educating and training biomedical researchers in biophotonics and advanced light microscopy methods [11143-173]

11143 27 Graduate programs in biophotonics: unique transdisciplinary training in applied photonics for the life sciences [11143-51]

PROBLEM-, PROJECT- AND CASE-BASED LEARNING

11143 28 Implementation of problem-based teaching and learning in advanced professional courses for optics related majors [11143-36]

11143 2A Project-based optical design practice course and teamwork: from a programmer to a lens designer [11143-90]

PROGRAM EVALUATION

11143 2C Method of continuous improvement of multidisciplinary programs and outreach activities [11143-41]

LIGHT SOURCES AND RADIOMETRY IN EDUCATION

11143 2E Lab-based radiometric concepts for undergraduate and graduate students (Invited Paper) [11143-143]

11143 2F Satisfactory role of LEDs as a light receiving component and their uses in science demonstration experiments for educational purposes [11143-79]

11143 2G Illumination optics for solid-state lighting [11143-149]

NOVEL MODELS AND METHODS FOR PHOTONICS EDUCATION

11143 2H On the use of reflective writing in an introductory photonics course (Invited Paper) [11143-54]

11143 2J Let us complete the puzzle together: a jigsaw cooperative learning trial on optical graduate course [11143-42]
K12 EDUCATION AND OUTREACH INITIATIVES

11143 2L	Exploratory science learning in a high school curriculum, using structured materials and light polarization (Invited Paper) [11143-78]
11143 2M	OPTIKS: Outreach for professionals who teach in informal environments and K-12 schools [11143-20]
11143 2N	The Optics Suitcase: educational outreach tool for inspiring careers in light [11143-97]
11143 2O	Increasing photonics awareness for youngsters using technology boot camps [11143-103]
11143 2P	Enlightening students: optics applications in the math classroom [11143-56]
11143 2R	Light-based educational outreach activities for pre-university students [11143-71]

POSTER SESSION

11143 2S	Is a glowing LED meaningful to determine the Plank's constant accurately? [11143-1]
11143 2T	Creation of an engineering course: design and simulation of high-capacity fiber optic systems utilizing VPI-photonics [11143-4]
11143 2U	Blended learning strategies on teaching light concepts for underprivileged school students [11143-6]
11143 2W	Educational opto-mechatronic apparatus to calculate the refractive index of liquids based on Snell's Law [11143-11]
11143 2X	Medical laser safety [11143-13]
11143 2Y	A survey on hybrid problem-based learning in a digital image processing course [11143-22]
11143 2Z	Optoelectronic NOR gates and rotating drum memory illuminate logic [11143-27]
11143 30	An innovative practical teaching model based on information technology [11143-35]
11143 34	International Day of Light (IDL): a new forum for interdisciplinary learning concepts in optics and photonics [11143-44]
11143 35	Flipped-classroom with interactive videos in first year undergraduate physics course in Hong Kong [11143-46]
11143 36	An optoelectronic integrated design practice project: laser countermeasure, reconnaissance alarm, and jamming system [11143-48]
11143 37	Teaching reform and practice of optoelectronic technology curriculum [11143-49]
Education development employing latest free space optical research papers for undergraduate communication engineering students in class and examination [11143-50]

A pilot study of optics laboratory activities impact on students connections between theory and experiment [11143-62]

Bringing reality in physics: System engineering approach to optical phenomena following Huygens’ Principle [11143-65]

Study on the feasibility of classified cultivation for master majoring in precision optical engineering [11143-67]

Using free space optics research to teach optics and optoelectronics [11143-68]

CCCC and LASER-TEC laser eye safety experiment/lab [11143-76]

Exploration and practice of teaching reform on photoelectric comprehensive experiments [11143-80]

Application of micro-course video in optical manufacturing technology [11143-86]

Error-detection tasks and peer feedback for engaging physics students [11143-95]

Teaching research and practice of integrated design experiment in photoelectric courses [11143-121]

One flipped classroom teaching model on the course of applied optics [11143-124]

Exploration of energy levels using diffraction gratings [11143-127]

Optics for everyone: measuring the results after five years of work [11143-129]

The photoelectric effect: project-based undergraduate teaching and learning optics through a modern physics experiment redesign [11143-135]

Increased knowledge transfer through the integration of research projects into university teaching [11143-140]

Thermal imaging and heat islands: cross-discipline learning in optics and meteorology [11143-160]

Similarities and differences in microwave and optical radiation detection [11143-168]

Experiential learning of data acquisition and sensor networks with a cloud computing platform [11143-200]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abraham, Thomas, 26
Adams, Rhys, 02, 3J
Agarwal, Anuradha, 0W, 1C
Alarcon, Minella C., 07
Alexander, Alonzo B., 0L
Allain, Guillaume, 04, 1S
Al-Qaisi, Sh., 2X
Al-Rubaeiee, M., 2X
Andersson-Engels, Stefan, 2C
Andre, Laura B., 1H
Araiza-Esquível, Ma., 0E
Badawi, Abeer, 38
Banach, Catherine A., 0l
Beasley, Gary, 17, 3F
Belloni, Mario, 0U
Best, Sabine, 0H
Bhatnagar, Sameer, 0Z
Bogaerts, Wim, 0D
Boily, Olivier, 1S
Book, Brendan, 3S
Bowers, John E., 2R
Boye, Daniel, 0U
Brady, Brittany A., 39
Brewer, Tyler, 1D, 1F
Brooks, Henry, 0U
Bruijillette, Yann, 0Z
Brousseau, Denis, 04
Buenaventura, Aria, 07
Burton, Sarah D., 0I
Cain, Laurence, 0U
Campos, J., 0V
Cardenas, Jaime, 0Y, 1C
Cassar, Marie T., 39
Cen, Zhao Feng, 2A
Chan, Philip, 2R
Charles, Elizabeth S., 02, 3J
Chau, Colleen, 3X
Chen, Lawrence R., 2H
Cheng, Xiangai, 3O
Chong, Katie E., 35
Choudhury, Sanjat Ahmed, 1N
Chrostowski, Lukas, 08
Chua, Annelle R., 07
Cooper, Matthew, 1D, 1F, 1I
Côté, Olivier, 04
Cruz, J. D. Vera, 1F
Cunningham, Robert, 3S

Curticapean, Dan, 06, 1O, 1R, 34, 3T
Danner, Aaron J., 1B
De Koninck, Paul, 27
DeGrooten Nelson, Jessica, 2N
Deschénes, Andréanne, 27
Deveney, Edward, 1C, 1M
Dionat, Pouya, 0K
Dingel, Benjamin B., 07
Diop, Julie, 1C, 1M
Dong, Liquan, 2B, 2J
Donnelly, Judith F., 1K, 2P
Donnelly, Matthew J., 2P
Draham, Robert, 1N
Duan, Chengfang, 30, 3N
Dugdale, Michael, 0Z, 3J
Dunn, Kaitlin J., 1N
Durst, Michael E., 0R
Eghbal, Morad Khosravi, 2T
El Aziz, Ahmed Abd, 3B
Escalera, J. C., 0V
Fang, Qiyin, 3X
Francis, Ryan M., 0I
Friedensen, Sarah, 0U
Fujimoto, Yasushi, 1V
Gagnon, Gerald, 1C
Galabada Dewage, Ashan Ariyawansa, 1N
Galibois, Stéphane, 1W
Galvez, Enrique J., 1A
Garza, Marilyn, 2R
Gauthier, Jean-Christophe, 1S
Geiss, Reinhard, 03, 0H
Ghosh, Sumit, 2U
Gilchrist, Pamela O., 0L
Godina, Pilar C., 0E
Greer, Amelia, 05
Gu, Guiru, 1C, 1M
Gu, Jihua, 37
Gunther, Jacqueline E., 2C
Hagen, Nathan, 2L
Hajek, Lukas, 1X
Hamdy, Kareem W., 2R
Hansfredt, Paul, 0M
Hao, Qun, 11, 2I, 28, 3I
Hasegawa, Makoto, 2F
Heitz, Benjamin, 1O, 1R, 34
Helgert, Christian, 0H
Hengster, Julia, 03
Hernandez-Gomez, C. R., 2W
Heuscher, Lena, 3V
Saunders, Danielle L., 0I
Schnitzer, Cheryl, 1C, 1M
Sengupta, Dipankar, 19
Serna, Samuel, 0W, 1C
Shahdaram, Mehdi, 2T
Shaw, Joseph A., 1P, 1Q, 3V
Shen, Zixing, 2Y
Shi, Feng, 3B
Shi, Jianhua, 30, 3G, 3N
Si, Ke, 24
Siahmakoun, Azad, 13
Simon, David, 1M
Smith, Steven C., 0I
Song, Ci, 3B
Song, Meiting, 1C
Song, Yong, 2J, 3I
Spencer, Mark F., 11
Steidle, Jeff, 1C
Su, Yin-Fong, 0I
Suizu, Koji, 1V
Suzuki, Yasuyo, 2L
Szecsody, James E., 0I
Takaki, Nicholas, 1N
Tan, Songxin, 2Y
Taylor, Brennan, 1D, 1F
Thériault, Gabrielle, 1W
Thibault, Simon, 04
Thornton, Douglas E., 1I
Threlkeld, Evan, 1D, 1F
Tian, Ye, 3B
Tie, Guipeng, 3B
Ting, Fridolin S. T., 35
Tirfessa, Negussie, 3A
Tjan, Janice, 1C
Tonkyn, Russell G., 0I
Tower, Sari, 1M
Tufaile, Adriana P. B., 16
Tufaile, Alberto, 16
Tünnermann, Andreas, 03
Ung, Bora, 19
Valleé, Cédric, 04
van Niekerk, Mathew, 1C
VanKouwenberg, Jim, 20
Vargas, Stacia K., 0M, 3C
Vasinek, Vladimir, 1X
Vauderwange, Oliver, 06, 1O, 1R, 34, 3T
Vazehgloo, Farhad, 1C
Vega-Torres, G., 2W
Verlage, Erik, 0W, 0Y, 1C
Viera-González, Perla Marlene, 3P, 3Q
Vikupitz, Connor, 11
Villagrana Barraza, Santiago, 0E
Vogel, Edward, 27
Vollmer, Michael, 12, 1P, 1Q
Wakita, Kazuki, 1V
Wang, Dongxiao, 21
Wang, Kaiwei, 24
Wang, Qianqian, 21, 3I
Wang, Shanshan, 21, 28, 2J, 3I
Wang, Shuping, 0P
Wang, Wei, 30, 3G, 3N
Whittaker, Chris, 0Z, 3J
Witt, Donald, 08
Wong, Ka-Lai, 35
Wong, Nicholas H. L., 1Z
Wu, Dan, 37
Xiao, Hang, 3B
Xie, Wenke, 36
Xu, Di, 1N
Xu, Jianfeng, 2A
Xu, Zhongjie, 3O
Yang, Qing, 24
Ye, Yan, 37
Yzuel, M. J., 0V
Zakoth, David, 0H
Zannini, Matthew, 3F
Zhang, Guiju, 37
Zhang, Lijun, 21
Zhang, Shaohui, 28
Zhao, Yuejin, 28, 2J
Zhong, Hairong, 30, 36, 3N, 3O
Zhou, Junqiang, 1Z
Zhou, Quan, 36
Zhou, Ya, 28, 2J, 3I
Conference Committees

Conference Chairs

Anne-Sophie Poulin-Girard, Université Laval (Canada)
Joseph A. Shaw, Montana State University (United States)

Conference Program Committee

Julie Bentley, University of Rochester (United States)
Caroline Boudoux, École Polytechnique de Montréal (Canada)
Curtis Burrill, The Optical Society
Santiago Camacho Lopez, CICESE (Mexico)
Lawrence Chen, McGill University (Canada)
Cristiano Cordeiro, Universidade Estadual de Campinas (Brazil)
Jessica DeGroote Nelson, Optimax, Ltd. (United States)
Colette DeHarpporte, LASER Classroom (United States)
Judy Donnelly, Three Rivers Community College (United States)
Dirk Fabian, SPIE
Qiyin Fang, McMaster University (Canada)
Andrew Forbes, University of the Witwatersrand (South Africa)
David Hagan, CREOL, The College of Optics and Photonics (United States)
Vengu Lakshminarayanan, University of Waterloo (Canada)
Lauren Mecum, IEEE Photonics Society
Marc Nantel, Niagara College (Canada)
Yukitoshi Otani, CORE, Utsunomiya University (Japan)
Thomas Pertsch, Universität Jena (Germany)
Stephen Pompea, National Optical Astronomy Observatory (United States)
Doug Razzano, IEEE Photonics Society
Alan Shore, Bangor University (United Kingdom)
Cristina E. Solano, Centro de Investigaciones en Optica (Mexico)
María J. Yzuel, Universitat Autònoma de Barcelona (Spain)
Victor Zadkov, Institute of Spectroscopy, Russian Academy of Sciences (Russian Federation)
Mourad Zghal, University of Carthage (Tunisia)
Xi-Cheng Zhang, University of Rochester (United States)

Conference Organizing Committee

Rhys Adams, Vanier College (Canada)
Claudine Allen, Université Laval (Canada)
Alexandre April, Cégep Garneau (Canada)
Martin Bernier, Université Laval (Canada)
Dominic Boudreau, Centre de Démonstration en Sciences Physiques (Canada)
Diane Déziel, Centre d’optique, Photonique et Laser (Canada)
Suzie Dufour, INO (Canada)
Mathieu Fortin, Cégep de Ste-Foy (Canada)
Jean-Christophe Gauthier, Université Laval (Canada)
Sophie Larochelle, Université Laval (Canada)
Simon Rainville, Université Laval (Canada)
Madison Rilling, Université Laval (Canada)
Leslie Rusch, Université Laval (Canada)
Geneviève Taurand, Bentley Systems, Inc. (Canada)
Gabrielle Thériault, Gentec Electro-Optics (Canada)
Simon Thibault, Université Laval (Canada)
Véronique Zambon, Telops, Inc. (Canada)

Session Chairs

1 Higher Education: Education through Publication and Research
 Qiyin Fang, McMaster University (Canada)

2 New Technologies: Training Using Specialized Software and Platforms as Practical Tools
 Simon Rainville, Université Laval (Canada)

3 Higher Education: Curriculum Development and Improvement
 Aaron Danner, National University of Singapore (Singapore)

4 Challenges: Optics and Photonics Education in Diverse, Remote and or Underprivileged Communities
 Dirk Fabian, SPIE

5 Challenges: Softskills: Enhancing Technical Training
 Dirk Fabian, SPIE

6 New Technologies: AR/VR for Optics and Photonics Education
 Joseph A. Shaw, Montana State University (United States)

7 New Technologies: Online Classroom and Remote Learning
 Guillermo E. Sanchez-Guerrero, Universidad Autónoma de Nuevo León (Mexico)

8 Higher Education: Laboratory Curriculum and Experiments for Hands-On Training
 Suzie Dufour, INO (Canada)
 Yukitoshi Otani, CORE, Utsunomiya University (Japan)

9 K12 and Outreach: Hands-On Experiments and Demonstrations for Young Audiences
 Mike McKee, CREOL, The College of Optics and Photonics (United States)
10 Industry: Optics and Photonics Curriculum and Programs
Matthew Posner, Excelitas (Canada)

11 Art and Nature: Optics in Nature and in Our Surroundings
Perla Maria Viera Gonzalez, Universidad Autónoma de Nuevo León (Mexico)

12 Art and Nature: Art and Photonics
Perla Maria Viera Gonzalez, Universidad Autónoma de Nuevo León (Mexico)

13 Industry: Industry and Academia Interaction in Education
Jessica DeGroote Nelson, Optimax, Ltd. (United States)

14 Industry: In-company Training and Internships
Gabrielle Thériault, Gentec-EO (Canada)

15 Higher Education: Development of Multidisciplinary Training Programs
María J. Yzuel, Universitat Autònoma de Barcelona (Spain)

16 Pedagogical Approaches: Problem-, Project- and Case-Based Learning
Nicholas M. Massa, Springfield Technical Community College (United States)

17 K12 and Outreach: Program Evaluation
Anne-Sophie Poulin-Girard, Université Laval (Canada)

18 Higher Education: Light Sources and Radiometry in Education
Michael Vollmer, Technische Hochschule Brandenburg (Germany)

19 Pedagogical Approaches: Novel Models and Methods for Photonics Education
Rhys Adams, Vanier College (Canada)

20 K12 and Outreach: K12 Education and Outreach Initiatives
Cristina E. Solano, Centro de Investigaciones en Óptica (Mexico)
Introduction

The 15th edition of the Conference on Education and Training in Optics and Photonics took place in Québec, Canada, 21–24 May 2019. Collocated with Photonics North, ETOP 2019 welcomed participants from 23 countries around the world and various professional backgrounds.

Since the first meeting in 1988 in San Diego, California (United States), ETOP has traveled around the world, bringing together leading experts and educators around the topic of high-quality training in optics and photonics at all levels. Along the way, ETOP has integrated the efforts of four professional organizations around a common goal: advancing and sharing knowledge in education in our field.

Light and light-based technologies touch the daily lives of everybody and are central to the future development of the global society. Innovation in education is essential to solving the grand challenges faced by the optics and photonics community. We need leading education programs at all levels and relevant continuous training for the workforce, to be welcoming and inclusive with the future and current professionals, and to reach out to the young people and the general public to meet the growing demands of research, science and industry.

This year’s technical program was rich and diverse with the community’s contribution. It was divided into five tracks discussing Higher Education; the use of New Technologies, Industry training, Pedagogical Methods, and K-12 and Outreach. Two special sessions addressed the special topics of Challenges in Optics, and Optics and Nature.

We look forward to the next edition of ETOP and hope to see you again in 2021.

Anne-Sophie Poulin-Girard
Joseph A. Shaw