Contents

INVERSE DESIGN OF INTEGRATED PHOTONIC CIRCUITS I

11283 05 Deep-learning-assisted on-chip Fourier transform spectrometer [11283-3]

NOVEL MATERIALS AND PLATFORMS

11283 0B Seeing blue: pushing integrated photonics into the ultraviolet with ALD aluminum oxide (Invited Paper) [11283-9]

11283 0C Low loss TiO$_2$ channel waveguides [11283-10]

PHOTONIC INTEGRATION TECHNOLOGIES

11283 0H InP grating coupler design for vertical coupling of InP and silicon chips [11283-15]

11283 0J Hybrid integration of a polarization independent optical circulator [11283-17]

OPTICAL SENSORS I

11283 0L High-order PT symmetry-based optical sensor [11283-19]

11283 0M Suspended silicon waveguide for mid-infrared gas sensing [11283-20]

OPTICAL SENSORS II

11283 0P CMOS-compatible silicon nitride waveguide photonic building blocks and their application for optical coherence tomography and other sensing applications (Invited Paper) [11283-23]

11283 0Q Ultra-sensitive photonic integrated circuit-based biosensors for healthcare applications (Invited Paper) [11283-24]

11283 0R Highly sensitive silicon Mach-Zehnder interferometer-based ultrasound sensor [11283-25]
Coupling condition engineered subwavelength grating waveguide ring resonator for sensitivity enhancement [11283-26]

PHOTONIC INTEGRATED CIRCUITS

Silicon photonic phase interrogators for on-chip calibration of optical phased arrays [11283-31]

28 Gbps silicon-germanium hetero-structure avalanche photodetectors [11283-32]

PROGRAMMABLE INTEGRATED PHOTONICS

Low-power reconfigurable photonic integrated circuits fabricated by femtosecond laser micromachining [11283-35]

ARTIFICIAL INTELLIGENCE WITH INTEGRATED OPTICS

A chaotic microresonator structure for an optical implementation of an artificial neural network (Invited Paper) [11283-37]

NONLINEAR PHOTONICS

Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing [11283-43]

OPTICAL SENSORS III

Fabrication of multichannel Bloch long-range surface plasmon biosensors [11283-48]

OPTICAL SENSORS IV

Optimizing resolution in an integrated blazed chirped Bragg grating spectrometer [11283-50]

Thermo-optically tuned spatial heterodyne Fourier-transform spectrometer [11283-51]

Silicon nitride waveguide platform for on-chip spectroscopy at visible and NIR wavelengths [11283-52]

Alloy-based wire array metamaterial fibres and hyperlenses for imaging applications at MIR frequencies [11283-53]
PHOTONIC DEVICES

11283 1K Design and fabrication of multilayer GRIN lenses by multi-material additive manufacturing for light coupling applications in planar optoelectronic systems [11283-54]

POSTER SESSION

11283 1O A fluorescence spectroscopy biosensor for lab-on-a-chip detection of antibiotics in milk [11283-58]

11283 1P Techniques to achieve low series resistance, high photon absorption rate, and high quantum efficiency for photonic CMOS field effect transistors [11283-59]

11283 1T Analysis of additive manufactured polymer optical waveguides: measurement and simulation of their waviness [11283-63]

11283 1U Optimization of solder reflow processing and part design in thermoplastic optical interconnect components [11283-64]

11283 1V Integrated high-resolution and broad-bandwidth optical spectrum analyzer [11283-65]

11283 1W Optofluidic device for sorting microparticles using optical whispering gallery mode resonances [11283-66]

11283 1X Athermal chirp-compensated directly modulated PIC for uncooled DWDM [11283-67]

11283 1Z A scalable fibre optic sensing architecture for lab-on-a-chip devices [11283-69]

11283 20 Design and analysis of polarization beam splitter based on cascaded MMI on SOI [11283-70]

11283 22 Waveguides sensitivity analysis for mid-infrared gas sensing [11283-72]

11283 23 Fabrication of optical waveguide using a non-contact printing technique [11283-73]

11283 27 The integrated vertically coupled resistive random-access memory (ReRAM)-based microdisk resonator and the relevant performance evaluation [11283-77]

11283 28 The impact of ultraviolet light on the switching characteristics of NiO resistive random-access memory (ReRAM) devices [11283-78]

11283 29 Aerosol jet printed PZT actuated MEMS resonating cantilever scanner [11283-79]

11283 2F Foundry-compatible thin-film lithium niobate electro-optic modulators [11283-85]

11283 2G Beam finite spot size effect on angle-tolerant optical filters [11283-86]
Geometry optimization of unidirectional integrated ring laser [11283-87]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Alonso-Ramos, Carlos, 0Y, 1H
Amar, Farah, 0Y
Anandarajah, Prince M., 1X
Andersson, Sean B., 1W
Anous, Noha, 2G
Atzeni, S., 1I
Aubin, Guy, 0Y
Backhaus, C., 1T
Bae, Kyuyoung, 19
Baets, Roel, 0R
Ballabio, A., 1H
Bannerman, Rex H. S., 1G
Bardella, Paolo, 2H
Barzaghi, A., 1H
Benedikovic, Daniel, 0Y
Benson, Trevor M., 13
Berini, Pierre, 1E
Berry, Sam A., 1G
Bienstman, Peter, 13
Boeuf, Frédéric, 0Y
Bosma, Rick, 1O
Bouville, D., 1H
Braddell, Jules, 1X
Caro, Jacob, 0R
Cassan, Eric, 0Y
Ceccarelli, F., 11
Chack, Devendra, 20
Chakravarty, Swapnajit, 2F
Chang, Yuhe, 1W
Chen, Peng-Jyun, 29
Choi, Young-Wan, 23
Chuang, Ricky W., 27, 28
Collier, Christopher M., 1O, 12
Conradi, Hauke, 0J
Crespi, A., 1I
Crozat, Paul, 0Y
Dahlem, Marcus S., 0X
de Felipe, David, 0J
Deniel, L., 1H
Devasagayam, Jasen, 1O
Dijkstra, M., 0C
Donegan, John F., 1X
Drexler, Wolfgang, 0P
Dwivedi, Sarvagya, 0X
Eggeling, Moritz, 0P
Eiche, Y., 1T
Ekinci, Kamil, 1W
El Shamy, Raghi S., 0M, 22
Falke, Floris, 0Q
Fédéli, Jean-Marc, 0Y
Field, James W., 1G
Figueys, Bruno, 0X
Franke, J., 1T
Frigerio, J., 1H
Fu, Kuan-Lun, 27
Gali, Sushma, 1I
García-Blanco, S. M., 0C
Gates, James C., 1G
Gawith, Corin B. E., 1G
Geuzebroek, Douwe H., 0Q
Ghillino, Enrico, 2H
Giannuzzi, Giuseppe, 2H
Gopinath, Juliet T., 19
Gotoda, Mitsunobu, 0H
Grayson, Michael, 19
Grigoletto Hayashi, Juliano, 1J
Gutierrez-Pascual, Deseada, 1X
Hainberger, Rainer, 0P
Hartmann, Jean-Michel, 0Y
Hassan, Shamsul, 20
Hayashi, Shusaku, 0H
Hegeman, I., 0C
Heideman, René G., 0Q
Hirbodvash, Zohreh, 1E
Hoffmann, G. A., 1T
Hohenhoff, Gerrit, 1K
Hoogland, Gabrie, 1U
Horsten, Roland, 0R
Hsu, Yi-Feng, 29
Hu, You-Kui, 28
Huang, Jinhua, 0P
Huang, Ming-Cheng, 28
Isella, G., 1H
Ismail, Dima, 1Z
Jaeschke, Peter, 1K
Jaffar, Noor, 1Z
Jain, Gaurav, 1X
Janicek, Petr, 1J
Jansen, Roelof, 0X
Jiang, Ke-Jian, 0P
Johnson, Peter M., 1U
Jordan, Nathan J., 1W
Kaiserle, Stefan, 1K
Keil, Norbert, 0J
Kerman, Sarp, 0X
Khail, Diaa A., 0M, 22, 2G
Khodami, Maryam, 1E

Proc. of SPIE Vol. 11283 1128301-7
Kim, Hyeon Beom, 23
Kim, Hyungchan, 23
King, Alexander S., 1W
Kjellman, Jon Øyvind, 0X
Klamkin, Jonathan, OH
Kleinert, Maritz, OJ
Ko, Hyun, 23
Ko, Jeong Beom, 23
Koike-Akino, Toshiaki, OH
Kojima, Keisuke, 0H
Kongnyuy, Tangla David, OX
Kopp, Christophe, 0Y
Kraft, Jochen, 0P
Kresse, Martin, OJ
Kruidhof, Marten, OR
Krupin, Oleksiy, 1E
Kumar Tyagi, Hemant, 0X
Kumar, Abhishek, 20
Kunst, Dominique, 0P
Kurfürst, Matthias, 0J
Kushmerick, Zora, 0P
Kwon, Seonguk, 0P
Kwong, Po Luen, 0Q
Kweon, Joo-Hwan, 0P
Lee, Sung Gyoung, 0P
Lei, Hailong, 0P
Leduc, Jean, 0Q
Leimeister, Jan, 0P
Leiser, Johannes, 0Q
Lemos, Hugo, 0Q
Leube, Matthias, 0V
Lemoff, N., 0T
Llinas, Juan, 0P
Lindau, Clemens, 0Q
Lindbergh, T., 1T
Ljungberg, Anders, 0Q
Liu, Qi, 0L
Liu, Xiao, 0P
Liu, Yanzhe, 0P
Liu, Yaowu, 0P
Liu, Zhenzhang, 0P
Liu, Zhuo, 0P
Liu, Ziyi, 0P
Li, Hang, 0P
Li, Hong, 0P
Li, Jie, 0P
Li, Jiajun, 0P
Li, Jun, 0P
Li, Lei, 0P
Li, Qiang, 0P
Li, Qian, 0P
Li, Qian, 0P
Li, Qing, 0P
Li, Ting, 0S, 0L, 0S
Li, Xiaotian, 0P
Li, Xuan, 0P
Li, Xiang, 0P
Li, Xing, 0P
Li, Yuan, 0P
Li, Yushan, 0P
Li, Zhe, 0P
Li, Zilin, 0P
Li, Ze, 0P
Li, Zhengyu, 0P
Lin, Hong, 0P
Lin, Zhiqiang, 0P
Lin, Zhuyong, 0P
Lin, Zhiyuan, 0P
Lindelín, N., 1T
Lisicka-Skrzek, Ewa, 1E
Liu, Q., 1H
Maese-Novo, Alejandro, 0P
Marinins, Aleksandrs, OX
Marris-Morini, Delphine, OY, 1H
McKenna, Robert, 1X
Meissner, Thomas, OH
Mellor, Chris, 13
Misra, Arijit, 1V
Montesinos-Ballester, M., 1H
Muelliner, Paul, 0P
Nevlacil, Stefan, 0P
Nishikawa, Satoshi, OH
Northfield, Howard, 1E
Nuck, Madeleine, OJ
Oh, Geum-Yoon, 23
Ohno, Norihiko, 1U
Olivieri, Anthony, 1E
Osellame, R., 11
Ouyang, Boiling, OR
Overmeyer, Ludger, 1K, 1T
Pan, James N., 1P
Park, Wounjhang, 19
Parsons, Kieran, OH
Pellegatta, F., 11
Peng, Kuan-Cheng, 29
Pentangelo, C., 11
Phang, Sendy, 13
Polett, Francesco, 1J
Preußler, Stefan, 1V
Proß, Mathias, OX
Raghunathan, Varun, 11
Ramirez, J.-M., 1H
Rank, Elisabet, 0P
Reitberger, T., 1T
Rezaei, Hossein S., 1K
Rottenberg, Xavier, 0X
Saifian, Reza, 2F
Sagmeister, Martin, 0P
Sang, Fengjiao, 0H
Schell, Martin, OJ
Scheres, Luc, 0Q
Scheu, Anja, 0J
Schneider, Thomas, 1V
Schotter, Joerg, 0P
Schreuder, Frederik, 0Q
Schuetz-Trilling, Anke, 0Q
Seddon, Angela, 13
Selvaraja, Shankar Kumar, 11
Seyringer, Dana, 0P
Singh, Ashutosh, 1O
Smith, Peter G. R., 1G
Smyth, Frank, 1X
Song, Bowen, OH
Song, Yanlin, OP
Soussan, Philippe, OX
Spotts, Isaac, 1Z
Sugawara, Takamune, 1U
Svitelsky, Oleksiy, 1W
Swilam, Mohamed A., 0M, 22
Szlag, Bertrand, 0Y
Tang, Yingheng, 0H
Teng, Min, 2F
Troia, Benedetto, OX
Tsui, Chi-Leung, 29
Vakarin, V., 1H
van der Meer, Adriaan, OQ
van Dongen, Koen W. A., 0R
Vesterling-Stenger, Rachel, 0Q
Viro, Léopold, 0Y
Vivien, Laurent, 0Y, 1H
Vogelbacher, Florian, 0P
Wan, Weishi, 0L
Wang, Wei-Chih, 29
West, Gavín N., 0B
White, Nicholas, 1J
Wu, Wen-Jong, 29
Wu, Yulin, 0L
Xia, Lipeng, 0S
Yi, Xiongsheng, 0H
Zawadzki, Crispin, 0J
Zergioti, Ioanna, 0Q
Zheng, Zhe-Ya, 27, 28
Zhou, Linjie, 1V
Zhou, Peiji, 0L
Zhou, Xue, 0P
Zhu, Jiangang, 19
Zhuang, Leimeng, 2F
Zohrabi, Mo, 19
Zou, Yi, 0S, 0L, 0S
Conference Committee

Symposium Chairs

Sailing He, KTH Royal Institute of Technology (Sweden) and Zhejiang University (China)
Yasuhiro Koike, Keio University (Japan)

Symposium Co-chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Center, University of Southampton (United Kingdom)

Program Track Chairs

Yakov Sidorin, Quarles & Brady LLP (United States)
Jean-Emmanuel Broquin, IMEP-LAHC (France)

Conference Chairs

Sonia M. García-Blanco, Universiteit Twente (Netherlands)
Pavel Cheben, National Research Council Canada (Canada)

Conference Program Committee

Pierre Berini, University of Ottawa (Canada)
Romeo Bernini, Istituto per il Rilevamento Elettromagnetico dell’Ambiente (Italy)
Andrea Blanco Redondo, The University of Sydney (Australia)
Alexandra Boltasseva, Purdue University (United States)
Jean-Emmanuel Broquin, IMEP-LAHC (France)
Florenta A. Costache, Fraunhofer-Institut für Photonische Mikrosysteme IPMS (Germany)
Xudong Fan, University of Michigan (United States)
Robert Hallir, Universidad de Málaga (Spain)
Guattiero Nunzi Conti, Istituto di Fisica Applicata Nello Carrara (Italy)
Alessia Pasquazi, University of Sussex (United Kingdom)
François Royer, Université Jean Monnet Saint-Etienne (France)
Jens H. Schmid, National Research Council Canada (Canada)
Yakov Sidorin, Quarles & Brady LLP (United States)
Winnie N. Ye, Carleton University (Canada)
Avinoam Zadok, Bar-Ilan University (Israel)
Wei Zhou, Virginia Polytechnic Institute and State University (United States)

Session Chairs
1 Inverse Design of Integrated Photonic Circuits I
 Sonia M. García-Blanco, Universiteit Twente (Netherlands)

2 Inverse Design of Integrated Photonic Circuits II
 Iñigo Molina-Fernández, Universidad de Málaga (Spain)

3 Novel Materials and Platforms
 Jean-Emmanuel Broquin, IMEP-LAHC (France)

4 Photonic Integration Technologies
 Rainer Hainberger, AIT Austrian Institute of Technology GmbH (Austria)

5 Optical Sensors I
 Carlos A. Alonso-Ramos, Centre de Nanosciences et de Nanotechnologies (France)

6 Optomechanics
 Florenta A. Costache, Fraunhofer-Institut für Photonische Mikrosysteme IPMS (Germany)

7 Optical Sensors II
 Sonia M. García-Blanco, Universiteit Twente (Netherlands)

8 Photonic Integrated Circuits
 Pavel Cheben, National Research Council Canada (Canada)

9 Programmable Integrated Photonics
 Yakov Sidorin, Quarles & Brady LLP (United States)

10 Artificial Intelligence with Integrated Optics
 Jean-Emmanuel Broquin, Institut de Microélectronique Électromagnétisme et Photonique et le Lab d’hyperfréquences et Caracte (France)

11 Nonlinear Photonics
 Joan Manel Ramírez, III-V Laboratory (France)

12 Optical Sensors III
 Jean-Emmanuel Broquin, IMEP-LAHC (France)
13 Optical Sensors IV
Florenta A. Costache, Fraunhofer-Institut für Photonische Mikrosysteme
IPMS (Germany)

14 Photonic Devices
Jens H. Schmid, National Research Council Canada (Canada)