Medical Imaging 2020

Image Perception, Observer Performance, and Technology Assessment

Frank W. Samuelson
Sian Taylor-Phillips
Editors

19–20 February 2020
Houston, Texas, United States

Sponsored by
SPIE

Cooperating Organizations
AAPM—American Association of Physicists in Medicine (United States)
MIPS—Medical Image Perception Society (United States)
SIM—Society for Imaging Informatics in Medicine (United States)
IFCARS—International Foundation for Computer Assisted Radiology and Surgery (Germany)
WMIS—World Molecular Imaging Society

Published by
SPIE

Volume 11316
Contents

vii Authors
ix Conference Committee
xi Awards

OBERVER PERFORMANCE EVALUATION

11316 05 Where's WALDO: a potential tool for training radiology residents? [11316-4]
11316 07 Understanding digital pathology performance: an eye tracking study [11316-5]
11316 08 Effect of time of day on radiology image interpretations [11316-6]
11316 09 Blue light filtering glasses and computer vision syndrome: a pilot study [11316-7]
11316 0A Using “Reader Disagreement Index” as a predictive reviewer performance monitoring tool for timely intervention [11316-8]

MODEL OBSERVERS I

11316 0B Supervised learning of model observers for assessment of CT image reconstruction algorithms [11316-9]
11316 0C Learning efficient channels with a dual loss autoencoder [11316-10]
11316 0D Markov-Chain Monte Carlo approximation of the Ideal Observer using generative adversarial networks [11316-11]
11316 0E Deep learning-based model observers that replicate human observers for PET imaging [11316-12]
11316 0F Deep learning based model observer by U-Net [11316-13]

BREAST

11316 0G Sequential reading effects in Dutch screening mammography [11316-14]
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast density in Saudi Arabia: intra and inter reader variability in screening mammograms assessed visually using BI-RADS and visual analogue scales</td>
<td>[11316-15]</td>
</tr>
<tr>
<td>Repeatability profiles towards consistent sensitivity and specificity levels for machine learning on breast DCE-MRI</td>
<td>[11316-16]</td>
</tr>
<tr>
<td>Investigating the potential of a gist-sensitive computer-aided detection tool</td>
<td>[11316-17]</td>
</tr>
<tr>
<td>ROC METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>Multi-reader multi-case analysis of variance software for diagnostic performance comparison of imaging modalities</td>
<td>[11316-18]</td>
</tr>
<tr>
<td>Efficiently calculating ROC curves, AUC, and uncertainty from 2AFC studies with finite samples</td>
<td>[11316-19]</td>
</tr>
<tr>
<td>Simulation of multi-reader multi-case study data with realistic ROC performance characteristics</td>
<td>[11316-20]</td>
</tr>
<tr>
<td>Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on read-data or conjectured Obuchowski-Rockette parameter estimates</td>
<td>[11316-21]</td>
</tr>
<tr>
<td>TECHNOLOGY ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>Network output visualization to uncover limitations of deep learning detection of pneumothorax</td>
<td>[11316-22]</td>
</tr>
<tr>
<td>Towards a video quality assessment based framework for enhancement of laparoscopic videos</td>
<td>[11316-23]</td>
</tr>
<tr>
<td>Progressively-growing AmbientGANs for learning stochastic object models from imaging measurements</td>
<td>[11316-24]</td>
</tr>
<tr>
<td>Performance assessment of texture reproduction in high-resolution CT</td>
<td>[11316-25]</td>
</tr>
<tr>
<td>Supplementing training with data from a shifted distribution for machine learning classifiers: adding more cases may not always help</td>
<td>[11316-26]</td>
</tr>
<tr>
<td>Effect of observer variability and training cases on U-Net segmentation performance</td>
<td>[11316-27]</td>
</tr>
<tr>
<td>MODEL OBSERVERS II</td>
<td></td>
</tr>
<tr>
<td>Human observer templates for lesion discrimination tasks</td>
<td>[11316-28]</td>
</tr>
</tbody>
</table>
Foveated model observer to predict human search performance on virtual digital breast tomosynthesis phantoms [11316-29]

Learning numerical observers using unsupervised domain adaptation [11316-30]

Deep learning channelized hotelling observer for multi-vendor DBT system image quality evaluation [11316-31]

Convolutional neural network-based anthropomorphic model observer for breast cone-beam CT images [11316-32]

POSTER SESSION

Brain vasculature segmentation based on human perception criteria [11316-33]

Observer-driven texture analysis in CT imaging [11316-34]

Implementation of an anthropomorphic model observer using convolutional neural network for breast tomosynthesis images [11316-35]

A performance comparison of convolutional neural network based anthropomorphic model observer and linear model observer for signal-known statistically detection tasks [11316-36]

Human visual property based grayscale contrast enhancement: phantom based effectiveness assessment [11316-37]

Perceptual image quality in digital dermoscopy [11316-38]

Combined global and local information for blind CT image quality assessment via deep learning [11316-39]

Anthropomorphic ResNet18 for multi-vendor DBT image quality evaluation [11316-40]

Evaluation of convolutional neural networks for search in 1/f^2.8 filtered noise and digital breast tomosynthesis phantoms [11316-41]

Spectral assessment of radiation therapy-induced skin erythema [11316-43]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abbey, Craig K., 0E, 0F, 0G, 0R, 0U, 0V, 17
Abdlaty, Ramy, 19
Abe, Hirayuki, 0I
Ahn, Sangtae, 0E
Aldossari, Khera, 0H
Alfuraih, Abdulrahman, 0H
AlMashouq, Taghrid, 0H
Almousa, Abeer, 0H
AlNaeem, Abdulrahman, 0H
Alnasser, Saud, 0H
Alomrani, Mona, 0H
Aloufi, Areej S., 0H
Alshabibi, Abdulaziz S., 08
Alshahrani, Bader, 0H
Alzahrani, Iman, 0H
Alzimami, Khaled, 0H
Anastasio, Mark A., 0C, 0D, 0Q, 0W
Astley, Susan, 0H
Atwal, Guprit, 07
Autrusseau, Florent, 0Z
Baek, Jongduk, 0Y, 11, 12
Bakic, Predrag R., 0V, 17
Barufaldi, Bruno, 0V, 17
Beghdadi, Azeddine, 0P
Biswas, Tapan, 0S
Bosmans, Hilde, 0X, 16
Bourcier, Romain, 0Z
Boone, John M., 0U
Boyd, S. M., 0K, 0N
Broeders, Mireille J. M., 0G
Brooks, D., 14
Brooks, Frank J., 0Q
Cha, Kenny H., 0S
Cheikh, Faouzi Alaya, 0P
Chen, Sophia, 0G
Chen, WeiJie, 0M
Chen, Yan, 07
Cockmartin, Lesley, 0X, 16
Crosby, Jennie, 0O
Eckstein, Miguel P., 0U, 0V, 17
Edvin, Bjorn, 0P
Ekpo, Ernest U., 0J
Elle, Ole Jakob, 0P
Ellis, Ian, 0T
Enus, Nicholas, 0A
Espig, K., 14
Fan, Fenglei, 0E
Fan, Jiahua, 10
Fei, Zhengu, 13
Fretland, Åsmund Avdem, 0P
Fuhrman, Jordan D., 0T
Gale, Alastair, 07
Gandomkar, Ziba, 0J
Gang, Grace J., 0R
Gao, Qi, 15
Garrett, Zachary, 10
Geertse, Tanya, 0G
Giger, Maryellen L., 0I, 0Q, 0T
Goissmann, Alexej, 0S
Granstedt, Jason L., 0C
Guillou, Julia, 0Z
Halloran, Peter, 0T
Han, Minah, 0Y, 12
Harkness, Elaine F., 0H
Hayward, Joseph, 19
He, Shenghua, 0W
Heard, Robert, 08
Henschke, Claudia I., 0T
Hills, Stephen L., 0K, 0N
Jirapatnakul, Artit C., 0T
Jonnalagadda, Aditya, 17
Kaaniche, Mounir, 0P
Khan, Zohaib Anjad, 0P
Kim, Byeongsoo, 0Y, 12
Kimpe, T., 14
Kinahan, Paul E., 0E
Koh, Amanda, 07
Krupinski, Elizabeth A., 0S, 09
Krupinski, Matthew A., 10
Lago, Miguel A., 0V, 17
Lee, Changwoo, 11
Lewis, Sarah J., 0J
Li, Danyang, 15
Li, Feng, 0O
Li, Hua, 0Q, 0W
Li, Junyuan, 0R
Li, Sui, 15
Li, Tong, 0J
Conference Committee

Symposium Chairs

Georgia D. Tourassi, Oak Ridge National Laboratory (United States)
Mefit N. Gurcan, Wake Forest Baptist Medical Center (United States)

Conference Chairs

Frank W. Samuelson, U.S. Food and Drug Administration (United States)
Sian Taylor-Phillips, The University of Warwick (United Kingdom)

Conference Program Committee

Craig K. Abbey, University of California, Santa Barbara (United States)
Mark A. Anastasio, Washington University in St. Louis (United States)
Susan M. Astley, The University of Manchester (United Kingdom)
Jongduk Baek, Yonsei University (Korea, Republic of)
François O. Bochud, Centre Hospitalier Universitaire Vaudois (Switzerland)
Jovan G. Brankov, Illinois Institute of Technology (United States)
Yan Chen, Loughborough University (United Kingdom)
Brandon D. Gallas, U.S. Food and Drug Administration (United States)
Howard C. Gifford, University of Houston (United States)
Stephen L. Hillis, The University of Iowa (United States)
Elizabeth A. Krupinski, Emory University School of Medicine (United States)
Matthew A. Kupinski, College of Optical Sciences, The University of Arizona (United States)
Mark F. McEntee, The University of Sydney (Australia)
Claudia R. Mello-Thoms, University Iowa Carver College of Medicine (United States) and University of Pittsburgh (United States)
Robert M. Nishikawa, University of Pittsburgh (United States)
Lilijana Platiša, Universiteit Gent (Belgium)
Ingrid S. Reiser, The University of Chicago (United States)
Pontus A. Timberg, Skånes Universitetssjukhus, SUS (Sweden)
David L. Wilson, Case Western Reserve University (United States)
Session Chairs

1. The Annual Harold L. Kundel Honorary Lecture
 Claudia R. Mello-Thoms, University Iowa Carver College of Medicine
 (United States)
 Elizabeth A. Krupinski, Emory University School of Medicine
 (United States)

2. Observer Performance Evaluation
 Mark F. McEntee, The University of Sydney (Ireland)
 Craig K. Abbey, University of California, Santa Barbara (United States)

3. Model Observers I
 Stephen L. Hillis, The University of Iowa (United States)
 Howard C. Gifford, University of Houston (United States)

4. Breast
 Sian Taylor-Phillips, The University of Warwick (United Kingdom)
 François O. Bochud, Centre Hospitalier Universitaire Vaudois
 (Switzerland)

5. ROC Methodology
 Robert M. Nishikawa, University of Pittsburgh (United States)
 Craig K. Abbey, University of California, Santa Barbara (United States)

6. Technology Assessment
 Mark A. Anastasio, University of Illinois (United States)
 Frank W. Samuelson, U.S. Food and Drug Administration
 (United States)

7. Model Observers II
 Matthew A. Kupinski, Wyant College of Optical Sciences
 (United States)
 Jovan G. Brankov, Illinois Institute of Technology (United States)
2020 Medical Imaging Award Recipients

Robert F. Wagner Best Student Paper Award
Robert F. Wagner was an active scientist in the SPIE Medical Imaging meeting, starting with the first meeting in 1972 and continuing throughout his career. He ensured that the BRH, and subsequently the CDRH, was a sponsor for the early and subsequent Medical Imaging meetings, helping to launch and ensure the historical success of the meeting. The Robert F. Wagner All-Conference Best Student Paper Award (established 2014) is acknowledgment of his many important contributions to the Medical Imaging meeting and his many important advances to the field of medical imaging.

This award is co-sponsored by:

The Medical Image Perception Society

2020 Recipients:

First Place: **Multi-body registration for fracture reduction in orthopaedic trauma surgery** *(11315-14)*
R. Han, A. Uneri, P. Wu, R. Vijayan, P. Vagdargi, M. Ketcha, N. Sheth, Johns Hopkins University (United States), S. Vogt, G. Kleinszig, Siemens Healthineers (Germany) G. M. Osgood, John Hopkins Hospital (United States), J. H. Siewerdsen, John Hopkins University (United States)

Second Place: **Phase contrast CT enabled three-material decomposition in spectral CT imaging** *(11312-47)*
Xu Ji, Ran Zhang, Ke Li, Guang-Hong Chen, University of Wisconsin School of Medicine and Public Health (United States)