Contents

ix Conference Committee
xi Introduction

SESSION 1 SURFACE PLASMONS AND DEVICES I

6988 04 Excitation and focusing of surface plasmon polaritons by nanostructuring [6988-03]
A. L. Stepanov, Laser Zentrum Hannover e.V. (Germany) and Kazan Physical-Technical Institute (Russia); A. B. Evlyukhin, Laser Zentrum Hannover e.V. (Germany) and Vladimir State Univ. (Russia); R. Kiyan, S. Passinger, A. Seidel, B. N. Chichkov, Laser Zentrum Hannover e.V. (Germany)

6988 05 Spectroscopic TPL imaging of gold nano-antennas [6988-04]
P. Ghenuche, S. Cherukulappurath, T. Taminiau, Institut de Ciencies Fotoniques (Spain); N. van Hulst, R. Quidant, Institut de Ciencies Fotoniques (Spain) and Institució Catalana de Recerca i Estudis Avançats (Spain)

SESSION 2 SURFACE PLASMONS AND DEVICES II

6988 09 SERS observed in periodic metallo-dielectric nanostructures fabricated using coated colloidal crystals [6988-08]
M. R. Gonçalves, A. Siegel, O. Marti, Ulm Univ. (Germany)

6988 0A Simulations of thermo-optic long-range surface plasmon polariton optical circuits [6988-09]
P. G. Hermansson, K. Leosson, Univ. of Iceland (Iceland)

SESSION 3 OPTICAL NANOFABRICATION AND CHARACTERIZATION I

6988 0B Light emission from a point-dipole source embedded in a metal-capped chiral sculptured thin film [6988-10]
T. G. Mackay, Univ. of Edinburgh (United Kingdom); A. Lakhtakia, Pennsylvania State Univ. (USA)

6988 0E Optical characterization of periodically poled KTP [6988-13]
W. H. Peeters, M. P. van Exter, Huygens Lab., Leiden Univ. (Netherlands)

SESSION 4 NANOSCALE PHOTONICS

6988 0G Pulsed operation of a lithium niobate whispering gallery resonator (Invited Paper) [6988-15]
Z. Gaburro, Univ. degli Studi di Trento (Italy)
Active components in photonic integrated circuits using electron spins in quantum dots [6988-16]
A. V. Thompson, H. Seigneur, College of Optics & Photonics, Univ. of Central Florida (USA); M. N. Leuenberger, Univ. of Central Florida (USA); W. V. Schoenfeld, College of Optics & Photonics, Univ. of Central Florida (USA)

Electromagnetic eigenwaves in metastructures: perturbation theory method [6988-18]
E. Ya. Glushko, Institute of Semiconductor Physics (Ukraine); A. E. Glushko, Institute of Semiconductor Physics (Ukraine) and Univ. of Leoben (Austria); V. N. Evteev, A. N. Stepanyuk, Krivoy Rog State Pedagogical Univ. (Ukraine)

Gap-dependent chiral coupling in T-shaped gold nanodimers [6988-19]
M. Kauranen, H. Husu, B. K. Canfield, Tampere Univ. of Technology (Finland); J. Laukkanen, B. Bai, M. Kuittinens, J. P. Turunen, Univ. of Joensuu (Finland)

Optically induced multi-particle structures: multi-dimensional energy landscapes [6988-20]
L. C. Dávila Romero, J. Rodríguez, D. L. Andrews, Univ. of East Anglia (United Kingdom)

STM induced second harmonic generation: towards near-field nonlinear optical microscopy [6988-21]
I. Berline, C. Royal, L. Douillard, F. Charra, C. Fiorini-Debuisschert, CEA Saclay (France)

The optical control of electronic energy transfer through single and dual auxiliary beams [6988-23]
D. S. Bradshaw, D. L. Andrews, Univ. of East Anglia (United Kingdom)

Measuring near-field optical distributions emitted from chip surface of photonic crystal patterned light emitting diodes [6988-24]
K.-D. Park, Inha Univ. (South Korea); W.-S. Ji, Samsung Electro-Mechanics Co. Ltd. (South Korea); D.-S. Park, D.-C. Kim, B.-H. O, S.-G. Park, E.-H. Lee, S. G. Lee, Inha Univ. (South Korea)

Efficiency of local surface plasmon polariton excitation on ridges (Invited Paper) [6988-25]
I. P. Radko, Aalborg Univ. (Denmark); S. I. Bozhevolnyi, Aalborg Univ. (Denmark) and Univ. of Southern Denmark (Denmark); A. Boltasseva, Technical Univ. of Denmark (Denmark); G. Brucoli, L. Martín-Moreno, Univ. de Zaragoza (Spain); F. J. García-Vidal, Univ. Autónoma de Madrid (Spain)

Numerical optimization of gold-dielectric nanoparticle heterostructures for surface plasmon resonance engineering [6988-26]
K. Choi, P. Zijlstra, J. W. M. Chan, M. Gu, Swinburne Univ. of Technology (Australia)

Excitation and characterization of dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths [6988-28]
T. Holmgaard, Aalborg Univ. (Denmark); S. I. Bozhevolnyi, Aalborg Univ. (Denmark) and Univ. of Southern Denmark (Denmark); L. Markey, A. Dereux, Institut Carnot de Bourgogne, CNRS-Univ. de Bourgogne (France); A. V. Krasavin, A. V. Zayats, The Queens Univ. of Belfast (United Kingdom)
SESSION 7 TECHNOLOGY

Dielectric surface plasmon Bragg mirrors: theory, design, and properties [6988-29]
S. Randhawa, M. U. González, J. Renger, Institut de Ciencies Fotoniques (Spain);
J.-C. Weeber, Institut Carnot de Bourgogne, CNRS-Univ. de Bourgogne (France);
R. Quidant, Institut de Ciencies Fotoniques (Spain) and Institució Catalana de Recerca
i Estudis Avançats (Spain)

Integration of plasmonic optical traps in microfluidics [6988-30]
L. Huang, O. J. F. Martin, École Polytechnique Fédérale de Lausanne (Switzerland)

SESSION 8 SUB-WAVELENGTH APERTURE OPTICS

Nanophotonics technology watch at the European Patent Office [6988-31]

Nanophotonics with sub-wavelength holes and nanoparticles (Invited Paper) [6988-32]
N. Jahr, A. Csaki, A. Steinbrück, S. Schröter, W. Fritzche, Institute of Photonic Technology
(Germany)

Localised modes of sub-wavelength hole arrays in thin metal films [6988-33]
J. Parsons, E. Hendry, B. Auguié, W. L. Barnes, J. R. Sambles, Univ. of Exeter (United Kingdom)

SESSION 9 CAVITY NANOPHOTONICS

Photonic crystal nanolasers with controlled spontaneous emission [6988-38]
R. Braive, A. Beveratos, I. Sagnes, CNRS-Lab. de Photonique et de Nanostructures (France);
G. Lecamp, Institut d’Optique, CNRS and Univ. Paris-Sud (France); S. Guilet, L. Le Gratiet,
A. Lemaitre, A. Miard, G. Patriarche, CNRS-Lab. de Photonique et de Nanostructures
(France); C. Sauvan, P. Lafrance, Institut d’Optique, CNRS and Univ. Paris-Sud (France);
I. Robert-Philip, CNRS-Lab. de Photonique et de Nanostructures (France)

Spectral properties and nonlinear dynamics of a spontaneous photon emitted by two level
atom trapped in damped nanocavity with a single resonance mode (Invited Paper)
[6988-40]
V. Cheltsov, Moscow State Mining Univ. (Russia)

SESSION 10 SURFACE PLASMONS AND DEVICES IV

Plasmon resonances and optical near-field enhancement in coupled nanosystems
[6988-44]
L. N. Illyashenko-Raguin, Swiss Federal Institute of Technology (Switzerland)

Spatially resolved enhancement of fluorescence and Raman scattering by Ag
nanoparticle arrays (Invited Paper) [6988-45]
N. Cade, T. Ritman-Meer, D. Richards, King’s College London (United Kingdom)
SESSION 11 COMPLEX OPTICS IN NANOSTRUCTURES

6988 1B Luminescent oxide nanoparticles with enhanced optical properties [6988-46]
G. Mialon, M. Moreau, D. Casanova, T.-L. Nguyen, S. Turkcan, A. Alexandrou, T. Gacoin,
J.-P. Boilot, Ecole Polytechnique (France)

6988 1C Pyroelectric effect inducing trapping of particles on periodically poled lithium niobate crystals [6988-47]
P. Ferraro, S. Grilli, Istituto Nazionale di Ottica Applicata, CNR (Italy)

6988 1D Calculations of the optical response of metallo-dielectric nanostructures of nonspherical particles by a layer-multiple-scattering method [6988-48]
N. Papanikolaou, National Ctr. for Scientific Research Demokritos (Greece); G. Gantzounis,
N. Stefanou, Univ. of Athens (Greece)

6988 1E Patterned multiwall carbon nanotube electrode arrays for liquid crystal photonic devices [6988-50]
T. D. Wilkinson, X. Wang, K. Teo, W. I. Milne, Univ. of Cambridge (United Kingdom)

6988 1F Optical limiting properties of single-walled carbon nanotube dispersions in amide solvents [6988-51]
J. Wang, W. J. Blau, Trinity College Dublin (Ireland)

6988 1G Optical nonlinear switches based on nanocrystalline silicon: Part II [6988-52]
D. Milovzorov, Fluens Technology Group, Ltd. (Russia)

POSTER SESSION

6988 1H Nanostructures based on organic semiconductors and thin films of CdSe and CdSe/ZnS nanoparticles: new materials for optoelectronics [6988-55]
A. A. Chistyakov, S. V. Daineko, A. O. Helmut, Moscow Engineering Physics Institute (Russia); V. A. Oleinikov, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russia); M. G. Tedoradze, Institute of Physical Chemistry and Electrochemistry (Russia); K. V. Zaharchenko, Moscow Engineering Physics Institute (Russia)

6988 1I Scattering of light by a sub-monolayer of randomly packed dielectric microspheres giving color effects in transmission [6988-54]
M. Guillaumée, M. Liley, R. Pugin, R. P. Stanley, Swiss Ctr. for Electronics and Microtechnology SA (Switzerland)

6988 1J Photonic devices based on patterning by two photon induced polymerization techniques [6988-53]
I. Fortunati, T. Dainese, R. Signorini, R. Bozio, Univ. of Padova (Italy); V. Tagliazucca, S. Dirè, Univ. of Trento (Italy); G. Lemercier, J.-C. Mulatier, C. Andraud, CNRS/Ecole Normale Supérieure de Lyon (France); P. Schiavuta, CIVEN - Coordinamento Interuniversitario Veneto per le Nanotecnologie (Italy); A. Rinaldi, S. Licoccia, Univ. of Roma Tor Vergata (Italy); J. Bottazzo, A. Franco Perez, M. Guglielmi, G. Brusatin, Univ. of Padova (Italy)
Large nonlinear refraction in gold island films under nano- and femto-second laser pulse excitation [6988-57]
A. Borshch, M. Brodyn, R. Fedorovich, V. Liakhovetskyi, P. Tomchuk, V. Volkov, Institute of Physics (Ukraine); L. Makarovsky, Yu. Nikitaev, Moscow Institute of Physics and Technology (Russia); F. Gostev, Institute of Chemical Physics (Russia)

Possibility of amplification of surface plasmon-polaritons by DC in the system with 2D photonic crystal [6988-58]
V. Lozovski, A. Tsykhonya, Kyiv T. Shevchenko National Univ. (Ukraine); A. Rudavskyi, Univ. of Groningen (Netherlands)

Theoretical analysis of surface-plasmon-polariton resonators in free space and close to an interface [6988-59]
J. Jung, T. Søndergaard, Aalborg Univ. (Denmark)

Influence of different insulating polymers on the performance of ZnO nanorod based LEDs [6988-60]
S. L. Zhang, A. B. Djurišić, Y. F. Hsu, A. M. C. Ng, M. H. Xie, The Univ. of Hong Kong (Hong Kong China)

Optical and electrical properties of the copper-carbon nanocomposites [6988-61]
T. Ghodselahi, M. A. Vesaghi, Sharif Univ. of Technology (Iran) and Institute for Studies in Theoretical Physics and Mathematics (Iran); A. Shafiekhani, M. Ahmadi, Institute for Studies in Theoretical Physics and Mathematics (Iran)

Periodic structures modified with silver nanoparticles for novel plasmonic application [6988-62]
A. Šileikaitė, T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, J. Puišo, A. Guobienė, I. Proščevas, Kaunas Univ. of Technology (Lithuania); M. Madsen, C. Maibohm, H.-G. Rubahn, Univ. of Southern Denmark (Denmark)

Application of vertical-cavity laser-based optical tweezers for particle manipulation in microfluidic channels [6988-63]
A. Kroner, C. Schneck, F. Rinaldi, R. Rösch, R. Michalzik, Ulm Univ. (Germany)

Fabrication and luminescent properties of ITO nanocrystalline coated micro Eu:Y₂O₃ particles [6988-64]
P. Psuja, D. Hreniak, W. Strek, Institute of Low Temperature and Structure Research (Poland)

Investigation of the patterning efficiency in a new azo-dye copolymer under UV irradiation toward photonic applications [6988-72]
L. Rocha, CEA, LIST (France); C. Fiorini, CEA Saclay (France); K. Matczyszyn, Wroclaw Univ. of Technology (Poland); P. Raimond, CEA, LITEN (France); J.-M. Nunzi, Queen’s Univ. (Canada)
Conference Committee

Symposium Chairs

Hugo Thienpont, Vrije Universiteit Brussel (Belgium)
Patrick P. Meyrueis, Université Louis Pasteur (France)
Giancarlo C. Righini, Istituto di Fisica Applicata Nello Carrara, CNR (Italy)

Conference Chairs

David L. Andrews, University of East Anglia (United Kingdom)
Jean-Michel Nunzi, Queen’s University (Canada)
Andreas Ostendorf, Laser Zentrum Hannover e.V. (Germany)

Program Committee

Fabrice Charra, Commissariat à l'Energie Atomique, Saclay (France)
Alain Dereux, Université de Bourgogne (France)
Aleksandra Djurisik, The University of Hong Kong (Hong Kong China)
Dirk M. Guldi, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
Satoshi Kawata, Osaka University (Japan)
Karsten König, Fraunhofer-Institut für Biomedizinische Technik (Germany)
Manijeh Razeghi, Northwestern University (USA)
Anatoly V. Zayats, Queen's University Belfast (United Kingdom)

Session Chairs

1 Surface Plasmons and Devices I
 David L. Andrews, University of East Anglia (United Kingdom)

2 Surface Plasmons and Devices II
 Andreas Ostendorf, Laser Zentrum Hannover e.V. (Germany)

3 Optical Nanofabrication and Characterization I
 Boris N. Chichkov, Laser Zentrum Hannover e.V. (Germany)

4 Nanoscale Photonics
 Jean-Michel Nunzi, Queen’s University (Canada)

5 Near-Field Interactions and Microscopies
 Jean-Michel Nunzi, Queen’s University (Canada)
6 Surface Plasmons and Devices III
Anatoly V. Zayats, Queen's University Belfast (United Kingdom)

7 Technology
David L. Andrews, University of East Anglia (United Kingdom)

8 Sub-Wavelength Aperture Optics
David L. Andrews, University of East Anglia (United Kingdom)

9 Cavity Nanophotonics
David L. Andrews, University of East Anglia (United Kingdom)

10 Surface Plasmons and Devices IV
Céline Fiorini-Debuisschert, Commissariat à l'Energie Atomique, Saclay (France)

11 Complex Optics in Nanostructures
Céline Fiorini-Debuisschert, Commissariat à l'Energie Atomique, Saclay (France)
Introduction

It is now recognized that many physical structures exhibit an optical response that is very substantially modified — in some cases almost entirely determined — by nanoscale features. In such systems, the character of optical propagation and measurement commonly involves an intricate interplay of structural, spectroscopic, electromagnetic, and quantum optical features, concisely exhibited by the term ‘nanophotonics’. This highly distinctive field is experiencing phenomenal growth, both at the fundamental research level and in emerging applications. An increasingly extensive range of structures is being actively researched, encompassing areas such as nanofabricated surfaces, supramolecular and polymeric systems, thin films, and nano-antennas.

The interest in nanophotonics is not limited to the special characteristics of optical phenomena such as absorption, scattering, and fluorescence, however. At the nanoscale, a number of processes and effects arise that have no direct counterpart or are insignificant in larger scale systems. Here, for example, one finds near-field interactions, evanescent waves, surface plasmon interactions, sub-wavelength aperture effects, cavity nanophotonics, and the like. In such an arena, the behaviour of light itself is very different from what most of us originally learned to understand, and for those involved, there is a frequent need to reappraise and critically re-evaluate familiar concepts. As ever, the character of light itself proves elusive.

This nanophotonics conference, the second to take place under the auspices of Photonics Europe, this time in the memorable city of Strasbourg, attracted a splendid set of contributions of a uniformly high standard, addressing the full range of subject matter — theory, experiment, and applications. It is my pleasure to thank all who contributed to the meeting; those who presented papers and delivered high-quality manuscripts for these proceedings, and my co-chairs and fellow members of the Program Committee who helped put the conference together. Finally, I record my sincere thanks to the members of SPIE staff who have been involved at every stage, for their uncompromising and characteristic professionalism, and above all for their keen support.

David L. Andrews