Phonts Plus Ultrasound: Imaging and Sensing 2011

Alexander A. Oraevsky
Lihong V. Wang
Editors

23–25 January 2011
San Francisco, California, United States

Sponsored and Published by
SPIE

Part One of Two Parts
Volume 7899

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
Contents

Part One

xvii Conference Committee
xix Introduction

SESSION 1 TRANSLATION TO CLINICAL APPLICATIONS I

7899 02 Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging [7899-01]
I. M. Graf, J. Su, D. Yeager, The Univ. of Texas at Austin (United States); J. Amirian, R. Smalling, The Univ. of Texas at Houston (United States); S. Emelianov, The Univ. of Texas at Austin (United States) and The Univ. of Texas at Houston (United States)

7899 04 Intravascular photoacoustic imaging of human coronary atherosclerosis (Best Oral Paper Award) [7899-03]
K. Jansen, Erasmus MC (Netherlands); A. F. W. van der Steen, Erasmus MC (Netherlands) and Interuniversity Cardiology Institute (Netherlands); G. Springeling, H. M. M. van Beusekom, J. W. Oosterhuis, G. van Soest, Erasmus MC (Netherlands)

7899 05 Multispectral optoacoustic tomography resolves smart probe activation in vulnerable plaques [7899-04]
D. Razansky, N. J. Harlaar, Technical Univ. of Munich and Helmholtz Ctr. Munich (Germany); J.-L. Hillebrands, Univ. Medical Ctr. Groningen (Netherlands); A. Taruttis, E. Herzog, Technical Univ. of Munich and Helmholtz Ctr. Munich (Germany); C. Zeebregts, G. van Dam, Univ. Medical Ctr. Groningen (Netherlands); V. Ntziachristos, Technical Univ. of Munich and Helmholtz Ctr. Munich (Germany)

7899 06 Optical-resolution photoacoustic microscopy of ischemic stroke [7899-05]
S. Hu, Washington Univ. in St. Louis (United States); E. Gonzales, Washington Univ. School of Medicine (United States); B. Soetikno, E. Gong, Washington Univ. in St. Louis (United States); P. Yan, Washington Univ. School of Medicine (United States); K. Maslov, Washington Univ. in St. Louis (United States); J.-M. Lee, Washington Univ. School of Medicine (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

7899 07 Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer [7899-06]
Z. Xie, X. Wang, R. F. Morris, F. R. Padilla, G. L. Lecarpentier, P. L. Carson, Univ. of Michigan School of Medicine (United States)

7899 08 Toward in-vivo photoacoustic imaging of human ovarian tissue for cancer detection [7899-07]
A. Aguirre, P. Kumavor, Y. Ardestirpour, Univ. of Connecticut (United States); M. M. Sanders, M. Brewer, Univ. of Connecticut Health Ctr. (United States); Q. Zhu, Univ. of Connecticut (United States)
SESSION 2 TRANSLATION TO CLINICAL APPLICATIONS II

7899 09 Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis [7899-08]
V. Nadvoretskiy, S. Ermilov, H.-P. Brecht, R. Su, A. Oraevsky, TomoWave Labs., Inc. (United States)

7899 0A Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer [7899-09]
T. N. Erpelding, Philips Research North America (United States); Y. Wang, Washington Univ. in St. Louis (United States); L. Jankovic, Philips Research North America (United States); Z. Guo, Washington Univ. in St. Louis (United States); J.-L. Robert, G. David, Philips Research North America (United States); C. Kim, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 0B High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels [7899-10]
I. Y. Petrov, Y. Petrov, D. S. Prough, R. O. Esenaliev, The Univ. of Texas Medical Branch (United States)

7899 0C Combination of optoacoustics and ultrasound imaging for non-invasive, rapid assessment, and management of circulatory shock [7899-11]
Y. Petrov, I. Y. Petrov, R. O. Esenaliev, M. Kinsky, D. S. Prough, The Univ. of Texas Medical Branch (United States)

7899 0D Volumetric photoacoustic endoscopy of upper gastrointestinal tract: ultrasonic transducer technology development [7899-12]
J.-M. Yang, C. Favazza, Washington Univ. in St. Louis (United States); R. Chen, Univ. of Southern California (United States); K. Maslov, X. Cai, Washington Univ. in St. Louis (United States); Q. Zhou, K. K. Shung, Univ. of Southern California (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

SESSION 3 TRANSLATION TO THERAPY MONITORING

7899 0G Optoacoustic technique for noninvasive monitoring of endotracheal tube placement and positioning [7899-15]
D. S. Prough, Y. Petrov, I. Petrov, M. Kinsky, R. O. Esenaliev, The Univ. of Texas Medical Branch (United States)

7899 0H Photoacoustic imaging of brachytherapy seeds using a channel-domain ultrasound array system [7899-16]
T. Harrison, R. J. Zemp, Univ. of Alberta (Canada)

7899 0K Photoacoustic image-guided needle biopsy of sentinel lymph nodes [7899-19]
C. Kim, Washington Univ. in St. Louis (United States); T. N. Erpelding, Philips Research North America (United States); W. J. Akers, Washington Univ. School of Medicine (United States); K. Maslov, L. Song, Washington Univ. in St. Louis (United States); L. Jankovic, Philips Research North America (United States); J. A. Margenthaler, S. Achilefu, Washington Univ. School of Medicine (United States); L. V. Wang, Washington Univ. in St. Louis (United States)
SESSION 4 MICROSCOPY

7899 OL Subwavelength-resolution photoacoustic microscopy for label-free detection of optical absorption in vivo [7899-20]
C. Zhang, K. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 OM Integrated photoacoustic and fluorescence confocal microscopy [7899-21]
Y. Wang, K. Maslov, C. Kim, S. Hu, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 ON Noninvasive quantification of metabolic rate of oxygen (MRO2) by photoacoustic microscopy [7899-22]
J. Yao, K. I. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 OO Optimal oblique light illumination for photoacoustic microscopy beyond the diffusion limit [7899-23]
C. P. Favazza, Z. Guo, K. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 OP Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology [7899-24]
P. Hajireza, W. Shi, P. Shao, S. Kerr, R. J. Zemp, Univ. of Alberta (Canada)

7899 OR Development of real-time photoacoustic microscopy [7899-26]
L. Wang, K. Maslov, J. Yao, L. Li, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 OS Ultrahigh resolution photoacoustic microscopy via transient absorption [7899-27]
R. Shelton, B. E. Applegate, Texas A&M Univ. (United States)

7899 OT High speed inverted optical-resolution photoacoustic microscopy [7899-28]
B. Rao, K. Maslov, A. Danielli, Washington Univ. in St. Louis (United States); R. Chen, K. K. Shung, Q. Zhou, Univ. of Southern California (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

SESSION 5 SENSING, SPECTROSCOPY, AND QUANTIFICATION

7899 OU Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry [7899-29]
C. Xu, P. D. Kumavor, A. Aguirre, Q. Zhu, Univ. of Connecticut (United States)

7899 OV Absolute measurement of absorption coefficient by combining photoacoustics and acousto-optics [7899-30]
K. Daoudi, R. Molenaar, T. G. Van Leeuwen, W. Steenbergen, Univ. of Twente (Netherlands)

7899 OW Quantification of optical absorption coefficients from acoustic spectra with photoacoustic tomography [7899-31]
Z. Guo, S. Hu, C. P. Favazza, Washington Univ. in St. Louis (United States); T. N. Erpelding, L. Jankovic, Philips Research North America (United States); L. V. Wang, Washington Univ. in St. Louis (United States)
SESSION 6 SMALL ANIMAL IMAGING AND PRECLINICAL IMAGING

7899 OX Picosecond acoustics at 30 GHz in the nucleus of an osteoblast cell [7899-32]
B. Audoin, M. Ducousso, T. Dehoux, Lab. de Mécanique Physique, CNRS, Univ. Bordeaux (France); C. Chollet, O. Zouani, C. Chanseau, M.-C. Durrieu, Lab. Biomateriaux et Réparation Tissulaire, Univ. Bordeaux (France)

7899 OY Photoacoustic sonar: principles of operation, imaging, and signal-to-noise analysis in time and frequency domains [7899-33]
S. Telenkov, A. Mandelis, Univ. of Toronto (Canada)

7899 OZ Dynamics of laser induced thermoelastic expansion of native and coagulated ex vivo soft tissue samples and their optical and thermo-mechanical properties [7899-34]
B. Soroushian, Ryerson Univ. (Canada); W. M. Whelan, Univ. of Prince Edward Island (Canada); M. C. Kolios, Ryerson Univ. (Canada)

7899 10 Optoacoustic sensor for nanoparticle linked immunosorbent assay (NanoLISA) [7899-35]
A. Conjusteau, A. Liopo, D. Tsyboulski, S. A. Ermilov, TomoWave Labs., Inc. (United States); W. R. Elliott III, N. Barsalou, Naval Health Research Ctr. Detachment Brooks City-Base (United States); S. M. Maswadi, R. D. Glickman, The Univ. of Texas Health Science Ctr. at San Antonio (United States); A. A. Oraevsky, TomoWave Labs., Inc. (United States)

7899 11 Small-animal whole-body imaging using a photoacoustic full ring array system [7899-36]
J. Xia, Z. Guo, Washington Univ. in St Louis (United States); A. Aguirre, Q. Zhu, Univ. of Connecticut (United States); L. V. Wang, Washington Univ. in St Louis (United States)

7899 12 Photoacoustic tomography of water in biological tissue [7899-37]
Z. Xu, C. Li, L. V. Wang, Washington Univ. in St Louis (United States)

7899 13 Imaging the small animal cardiovascular system in real-time with multispectral optoacoustic tomography [7899-38]
A. Taruttis, E. Herzog, D. Razansky, V. Ntziachristos, Helmholtz Zentrum Munich GmbH (Germany) and Technical Univ. Munich (Germany)

7899 14 Visualization of mouse kidney perfusion with multispectral optoacoustic tomography (MSOT) at video rate [7899-39]
A. Buehler, E. Herzog, D. Razansky, V. Ntziachristos, Technische Univ. München (Germany) and Helmholtz Zentrum München GmbH (Germany)

7899 15 In vivo longitudinal photoacoustic imaging of subcutaneous tumours in mice (Best Paper Award) [7899-40]
J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, P. Beard, Univ. College London (United Kingdom)
SESSION 7 ULTRASONIC MODULATION OF LIGHT

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7899 18</td>
<td>Photorefractive acousto optic imaging in the therapeutic window</td>
<td>S. Farahi, Institut Langevin, CNRS, Lab. d'Optique Physique (France); G. Montemezzani, Univ. Paul Verlaine Metz et Supélec (France); A. A. Grabar, Uzhgorod National Univ. (Ukraine); J.-P. Huignard, Jphopto-consultant (France); F. Ramaz, Institut Langevin, CNRS, Lab. d'Optique Physique (France)</td>
</tr>
<tr>
<td>7899 19</td>
<td>Microbubble enhancement of ultrasound-modulated optical sensing with incoherent light</td>
<td>J. E. Honeysett, E. Stride, T. S. Leung, Univ. College London (United Kingdom)</td>
</tr>
<tr>
<td>7899 1A</td>
<td>Focusing light into turbid media: time-reversed ultrasonically encoded (TRUE) focusing</td>
<td>H. Liu, X. Xu, L. V. Wang, Washington Univ. in St. Louis (United States)</td>
</tr>
<tr>
<td>7899 1C</td>
<td>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</td>
<td>N. T. Huynh, D. He, B. R. Hayes-Gill, J. A. Crowe, J. G. Walker, M. L. Mather, F. R. A. J. Rose, The Univ. of Nottingham (United Kingdom); N. G. Parker, M. J. W. Povey, Univ. of Leeds (United Kingdom); S. P. Morgan, The Univ. of Nottingham (United Kingdom)</td>
</tr>
</tbody>
</table>

SESSION 8 NOVEL DESIGNS, SYSTEMS, AND TECHNIQUES

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7899 1D</td>
<td>Optoacoustic imaging system with improved collection efficiency</td>
<td>D. Tsyboulski, A. Conjusteau, S. A. Ermilov, H.-P. F. Brecht, A. Liopo, R. Su, V. Nadvoretsky, A. A. Oraevsky, TomoWave Labs., Inc. (United States)</td>
</tr>
<tr>
<td>7899 1E</td>
<td>Polymer bragg waveguide ultrasound detectors</td>
<td>V. Govindan, S. Ashkenazi, Univ. of Minnesota (United States)</td>
</tr>
<tr>
<td>7899 1F</td>
<td>A miniature all-optical photoacoustic imaging probe</td>
<td>E. Z. Zhang, P. C. Beard, Univ. College London (United Kingdom)</td>
</tr>
<tr>
<td>7899 1G</td>
<td>Tyrosinase-catalyzed melanin as a contrast agent for photoacoustic tomography</td>
<td>A. Krumholz, S. Chavez, J. Yao, T. Fleming, W. E. Gillanders, L. V. Wang, Washington Univ. in St. Louis (United States)</td>
</tr>
<tr>
<td>7899 1H</td>
<td>Photoacoustic imaging of gene expression using tyrosinase as a reporter gene</td>
<td>R. J. Paproski, A. Forbrich, T. Harrison, M. Hilt, R. J. Zemp, Univ. of Alberta (Canada)</td>
</tr>
<tr>
<td>7899 1J</td>
<td>Ultrafast photoacoustic imaging with improved elevational focusing</td>
<td>Y.-H. Wang, P.-C. Li, National Taiwan Univ. (Taiwan)</td>
</tr>
<tr>
<td>7899 1K</td>
<td>Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms</td>
<td>J. Brunker, P. Beard, Univ. College London (United Kingdom)</td>
</tr>
<tr>
<td>7899 1L</td>
<td>Comparison of PA imaging by narrow beam scanning and one-shot broad beam excitation</td>
<td>J. Xia, C.-W. Wei, L. Huang, Univ. of Washington (United States); I. M. Pelivanov, Moscow State Univ. (Russian Federation); M. O'Donnell, Univ. of Washington (United States)</td>
</tr>
</tbody>
</table>
SESSION 9 MOLECULAR IMAGING, PROBES, AND BEACONS

7899 1M Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods [7899-57]
S. Ha, S. Tripathy, A. Carson, L. L. Lavery, Univ. of Pittsburgh (United States) and Univ. of Pittsburgh Medical Ctr. (United States); H. Zhang, A. Agarwal, N. Kotov, Univ. of Michigan (United States); F. S. Villanueva, K. Kim, Univ. of Pittsburgh (United States) and Univ. of Pittsburgh Medical Ctr. (United States)

7899 1O Nano-LISA for in vitro diagnostic applications [7899-59]
S. Maswadi, R. D. Glickman, The Univ. of Texas Health Science Ctr. at San Antonio (United States); R. Elliott, N. Barsalou, Naval Medical Research Unit - San Antonio (United States)

7899 1R Dynamic manipulation of magnetic contrast agents in photoacoustic imaging [7899-62]
C. Jia, J. Xia, Univ. of Washington (United States); I. M. Pelivanov, Univ. of Washington (United States) and Moscow State Univ. (Russian Federation); C. H. Seo, X. Hu, Y. Jin, X. Gao, M. O’Donnell, Univ. of Washington (United States)

7899 1S Hypoxia targeted carbon nanotubes as a sensitive contrast agent for photoacoustic imaging of tumors [7899-63]
S. Zanganeh, A. Aguirre, N. C. Biswal, C. Pavlik, M. B. Smith, U. Alqasemi, H. Li, Q. Zhu, Univ. of Connecticut (United States)

SESSION 10 NOVEL SIGNAL AND IMAGE PROCESSING

7899 1U Estimate of effective singular values of a photoacoustic imaging system by noise characterization [7899-65]
M. B. Roumeliotis, Lawson Health Research Institute (Canada) and Univ. of Western Ontario (Canada); M. A. Anastasio, Illinois Institute of Technology (Canada); J. J. L. Carson, Lawson Health Research Institute (Canada) and Univ. of Western Ontario (Canada)

7899 1V Use of a pulsed fibre laser as an excitation source for photoacoustic tomography [7899-66]
T. J. Allen, Univ. College London (United Kingdom); S. Alam, Univ. of Southampton (United Kingdom); E. Z. Zhang, J. G. Laufer, Univ. College London (United Kingdom); D. J. Richardson, Univ. of Southampton (United Kingdom); P. C. Beard, Univ. College London (United Kingdom)

7899 1X High contrast photoacoustic imaging with dual apodization with cross-correlation: ex-vivo study [7899-68]
C. H. Seo, M. O’Donnell, Univ. of Washington (United States)

7899 1Y Tomographic optoacoustic inversion in dynamic illumination scenarios [7899-69]
T. Jetzfellner, A. Rosenthal, A. Buehler, A. Dima, K.-H. Englmeier, V. Ntziachristos, D. Razansky, Technische Univ. München (Germany) and Helmholtz Zentrum München GmbH (Germany)
SESSION 11 NANOPARTICULATE CONTRAST AGENTS

7899 1Z Ultrasound and photoacoustic imaging to monitor mesenchymal stem cells labeled with gold nanoparticles [7899-120]
S. Y. Nam, L. M. Ricles, The Univ. of Texas at Austin (United States); K. Sokolov, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States) and The Univ. of Texas at Austin (United States); L. J. Suggs, The Univ. of Texas at Austin (United States); S. Y. Emelianov, The Univ. of Texas at Austin (United States) and The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)

7899 20 Ultrasound-induced cellular uptake of plasmonic nanorods [7899-71]
A. Hannah, K. Wilson, K. Homan, S. Emelianov, The Univ. of Texas at Austin (United States)

7899 24 Photoacoustic and nuclear imaging of 125I-labeled gold nanorod contrast agent [7899-75]
X. Shao, A. Agarwal, J. R. Rajian, N. A. Kotov, X. Wang, Univ. of Michigan (United States)

SESSION 12 NOVEL METHODS AND TECHNOLOGIES

7899 25 Focusing of light through scattering media [7899-76]
F. Kong, Hunter College of the City Univ. of New York (United States); R. Silverman, Columbia Univ. (United States) and Riverside Research Institute (United States); L. Liu, Hunter College of the City Univ. of New York (United States); P. V. Chitnis, Riverside Research Institute (United States); Y. C. Chen, Hunter College of the City Univ. of New York (United States)

7899 26 Chronic label-free volumetric photoacoustic microscopy of melanoma cells in scaffolds in vitro [7899-77]
X. Cai, Y. Zhang, C. Kim, S.-W. Choi, Y. Xia, L. V. Wang, Washington Univ. in St. Louis (United States)

7899 27 Photoacoustic generation using coded excitation [7899-78]
S.-Y. Su, P.-C. Li, National Taiwan Univ. (Taiwan)

7899 28 Coded photoacoustic Doppler excitation with near-optimal utilization of the time and frequency domains [7899-79]
A. Sheinfeld, S. Gilead, A. Eyal, Tel Aviv Univ. (Israel)

7899 2A Stimulated Raman imaging with ultrasound detection [7899-81]
V. V. Yakovlev, Univ. of Wisconsin-Milwaukee (United States); G. D. Noojin, TASC, Inc. (United States); P. A. Thomas, Air Force Research Lab. (United States); M. L. Denton, TASC, Inc. (United States); B. A. Rockwell, R. J. Thomas, Air Force Research Lab. (United States)

7899 2C Broad-band high-efficiency optoacoustic generation using a novel photonic crystal-metallic structure [7899-83]
Y. Guo, H. W. Baac, S.-L. Chen, T. B. Norris, L. J. Guo, Univ. of Michigan (United States)

7899 2D Development and validation of a combined photoacoustic micro-ultrasound system for in vivo oxygen saturation estimation [7899-84]
A. Needles, A. Heimiller, P. Ephrat, D. Bates, C. Bilan-Tracey, C. Theodoropoulos, D. Hirson, VisualSonics Inc. (Canada); F. S. Foster, VisualSonics Inc. (Canada) and Sunnybrook Health Sciences Ctr. (Canada)
Part Two

POSTER SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7899 2G</td>
<td>Adaptive and quantitative reconstruction algorithm for photoacoustic tomography</td>
<td>S. Bu, K. Kondo, M. Yamakawa, T. Shiina, Kyoto Univ. (Japan); K. Fukutani, Y. Someda, Y. Asao, Canon Inc. (Japan)</td>
</tr>
<tr>
<td>7899 2H</td>
<td>In vivo characterization of acute myocardial ischemia using photoacoustic imaging with a focused transducer</td>
<td>Z. Li, Fujian Normal Univ. (China) and Key Lab. of Optoelectronic Science and Technology for Medicine (China) and Fujian Provincial Key Lab. of Photonic Technology (China); H. Chen, Fujian Provincial Hospital (China) and Fujian Medical Univ. (China); W. Xie, H. Li, Fujian Normal Univ. (China) and Key Lab. of Optoelectronic Science and Technology for Medicine (China) and Fujian Provincial Key Lab. of Photonic Technology (China)</td>
</tr>
<tr>
<td>7899 2I</td>
<td>Dual-mode photoacoustic microscopy of carbon nanotube incorporated scaffolds in blood and biological tissues</td>
<td>X. Cai, S. Hu, Washington Univ. in St. Louis (United States); B. Paratala, B. Sitharaman, State Univ. of New York at Stony Brook (United States); L. V. Wang, Washington Univ. in St. Louis (United States)</td>
</tr>
<tr>
<td>7899 2J</td>
<td>Characterization of photoacoustic tomography system with dual illumination</td>
<td>K. Fukutani, Y. Someda, M. Taku, Canon Inc. (Japan); Y. Asao, Canon Inc. (Japan) and Kyoto Univ. (Japan); S. Kobayashi, T. Yagi, Canon Inc. (Japan); M. Yamakawa, T. Shiina, T. Sugie, M. Toi, Kyoto Univ. (Japan)</td>
</tr>
<tr>
<td>7899 2K</td>
<td>Advanced model-based reconstruction algorithm for practical three-dimensional photoacoustic imaging</td>
<td>K. Tanji, K. Watanabe, K. Fukutani, Canon Inc. (Japan); Y. Asao, Canon Inc. (Japan) and Kyoto Univ. (Japan); T. Yagi, Canon Inc. (Japan); M. Yamakawa, T. Shiina, Kyoto Univ. (Japan)</td>
</tr>
<tr>
<td>7899 2L</td>
<td>Calibration of ultrasonic sensors using optoacoustics</td>
<td>A. Rosenthal, V. Ntziachristos, D. Razansky, Univ. of München (Germany) and Helmholtz Zentrum München GmbH (Germany)</td>
</tr>
<tr>
<td>7899 2M</td>
<td>Detecting abnormal vasculature from photoacoustic signals using wavelet-packet features</td>
<td>J. Zalev, M. C. Kolios, Ryerson Univ. (Canada)</td>
</tr>
<tr>
<td>7899 2N</td>
<td>Combined acoustic-photoacoustic and fluorescence imaging catheter for the detection of the atherosclerotic plaque</td>
<td>M. Abran, C. Matteau-Pelletier, K. Zerouali-Boukhal, École Polytechnique de Montréal (Canada); J.-C. Tardif, Montreal Heart Institute (Canada); F. Lesage, École Polytechnique de Montréal (Canada)</td>
</tr>
<tr>
<td>Paper Number</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7899 2O</td>
<td>Comparison of photoacoustic imaging systems using continuous-wave lasers with a chirped intensity modulation frequency to pulsed lasers</td>
<td>A. Petschke, P. J. La Rivière, The Univ. of Chicago Medical Ctr. (United States)</td>
</tr>
<tr>
<td>7899 2Q</td>
<td>Regional sensitivity comparison between optical and acousto-optic sensing</td>
<td>S. Gunadi, T. S. Leung, Univ. College London (United Kingdom)</td>
</tr>
<tr>
<td>7899 2R</td>
<td>Fast semi-analytical acoustic inversion for quantitative optoacoustic tomography</td>
<td>A. Rosenthal, T. Jetzfellner, D. Razansky, Univ. of München (Germany) and Helmholtz Zentrum München GmbH (Germany)</td>
</tr>
<tr>
<td>7899 2S</td>
<td>Simulating the spatially-dependent frequency response of arbitrary-shape acoustic detectors for optoacoustic imaging</td>
<td>A. Rosenthal, V. Ntziachristos, D. Razansky, Univ. of München (Germany) and Helmholtz Zentrum München GmbH (Germany)</td>
</tr>
<tr>
<td>7899 2T</td>
<td>Photoacoustic endoscopy using polymer microring resonators</td>
<td>S.-L. Chen, T. Ling, H. W. Baac, L. J. Guo, Univ. of Michigan (United States)</td>
</tr>
<tr>
<td>7899 2U</td>
<td>Visualization of microcalcifications using photoacoustic imaging: feasibility study</td>
<td>T.-C. Hsiao, Industrial Technology Research Institute (Taiwan) and National Tsing Hua Univ. (Taiwan); P.-H. Wang, C.-T. Fan, Y.-Y. Cheng, M.-L. Li, National Tsing Hua Univ. (Taiwan)</td>
</tr>
<tr>
<td>7899 2W</td>
<td>Effect of the illumination method on photo-acoustic image quality with array transducer based system</td>
<td>K. Tsujita, FUJIFILM Corp. (Japan); M. Ishihara, T. Hirasawa, National Defense Medical College (Japan); K. Irisawa, K. Hirota, Y. Satoh, FUJIFILM Corp. (Japan); M. Kikuchi, National Defense Medical College (Japan)</td>
</tr>
<tr>
<td>7899 2X</td>
<td>Functional transcranial photoacoustic micro-imaging of mouse cerebrovascular cross-section and hemoglobin oxygenation changes during forepaw electrical stimulation</td>
<td>L.-D. Liao, Y.-Y. Chen, C.-T. Lin, J.-Y. Chang, National Chiao Tung Univ. (Taiwan); M.-L. Li, National Tsing Hua Univ. (Taiwan)</td>
</tr>
<tr>
<td>7899 2Z</td>
<td>Multifunctional photoacoustic signals detected by P(VDF/TrFE) film sensor with a wide range of frequency</td>
<td>M. Ishihara, T. Hirasawa, National Defense Medical College (Japan); K. Tsujita, FUJIFILM Corp. (Japan); M. Kitagaki, I. Bansaku, National Defense Medical College (Japan); M. Fujita, National Defense Medical College Research Institute (Japan); M. Kikuchi, National Defense Medical College (Japan)</td>
</tr>
</tbody>
</table>
Statistical weighting of model-based optoacoustic reconstruction for minimizing artefacts caused by strong acoustic mismatch [7899-109]
X. L. Deán-Ben, D. Razansky, V. Ntziachristos, Technical Univ. of Munich (Germany) and Helmholtz Ctr. Munich (Germany)

Ultrasonic attenuation of biomaterials for compensation in photoacoustic imaging [7899-110]
J. Bauer-Marschallinger, T. Berer, H. Roitner, Christian Doppler Lab. of Photoacoustic Imaging and Laser Ultrasonics (Austria) and RECENDT GmbH (Austria); H. Grün, RECENDT GmbH (Austria); B. Reitinger, P. Burgholzer, Christian Doppler Lab. of Photoacoustic Imaging and Laser Ultrasonics (Austria) and RECENDT GmbH (Austria)

Analysis and verification of dominant factor to obtain the high resolution photo-acoustic imaging [7899-111]
T. Hirasawa, M. Ishihara, M. Kitagaki, I. Bansaku, National Defense Medical College (Japan); M. Fujita, National Defense Medical College Research Institute (Japan); M. Kikuchi, National Defense Medical College (Japan)

Second generation optical-resolution photoacoustic microscopy (Best Poster Paper Award) [7899-112]
K. Maslov, S. Hu, L. V. Wang, Washington Univ. in St. Louis (United States)

Do large fluorescent particles enhance the modulation efficiency of ultrasound-modulated fluorescence? [7899-113]
Y. Liu, B. Yuan, The Univ. of Texas at Arlington (United States); J. Vignola, Catholic Univ. of America (United States)

Combined ultrasonic and photoacoustic system for deep tissue imaging [7899-114]
C. Kim, Washington Univ. in St. Louis (United States); T. N. Erpelding, L. Jankovic, Philips Research North America (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

Forward model of thermally-induced acoustic signal specific to intraluminal detection geometry [7899-115]
S. Mukherjee, C. F. Bunting, D. Piao, Oklahoma State Univ. (United States)

Photoacoustic and thermoacoustic tomography of dog prostates [7899-117]
H. Ke, Z. Guo, Washington Univ. in St Louis (United States); T. N. Erpelding, L. Jankovic, Philips Research North America (United States); R. L. Grubb III, Washington Univ. in St Louis School of Medicine (United States); L. V. Wang, Washington Univ. in St Louis (United States)

Real-time optical-resolution photoacoustic microscopy using fiber-laser technology [7899-118]
W. Shi, P. Hajireza, P. Shao, S. Kerr, R. J. Zemp, Univ. of Alberta (Canada)

Photoacoustic imaging to guide needle injections [7899-119]
J. L. Su, A. B. Karpioruk, Y.-S. Chen, S. Y. Emelianov, The Univ. of Texas at Austin (United States)

Impulse-driven near-field radiofrequency thermoacoustic (NRT) tomography [7899-121]
D. Razansky, S. Kellnberger, V. Ntziachristos, Technische Univ. München (Germany) and Helmholtz Zentrum München GmbH (Germany)
Effects of calibration factors and intensity dependent non-linearity on functional photoacoustic microscopy [7899-122]
A. Danielli, J. Yao, A. Krumholz, L. V. Wang, Washington Univ. in St. Louis (United States)

Blind spectral unmixing to identify molecular signatures of absorbers in multispectral optoacoustic tomography [7899-123]
S. Morscher, J. Glatz, N. C. Deliolanis, A. Buehler, D. Razansky, V. Ntziachristos, Technische Univ. München (Germany) and Helmholtz Zentrum München GmbH (Germany)

Total internal reflection photoacoustic detection spectroscopy [7899-124]
A. S. M. Sudduth, B. S. Goldschmidt, E. B. Samson, P. J. D. Whiteside, J. A. Viator, Univ. of Missouri-Columbia (United States)

Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow [7899-125]
C. M. O'Brien, K. D. Rood, S. K. Gupta, J. D. Mosley, B. S. Goldschmidt, N. Sharma, S. Sengupta, J. A. Viator, Univ. of Missouri-Columbia (United States)

On the role of passive elements in photoacoustic reconstruction [7899-126]
C. H. Slump, R. G. H. Willemink, S. Manohar, Univ. of Twente (Netherlands); B. J. Hoenders, Univ. of Groningen (Netherlands)

Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection [7899-127]
E. Strohm, M. Rui, Ryerson Univ. (Canada); I. Gorelikov, N. Matsuura, Sunnybrook Health Sciences Ctr. (Canada); M. Kolios, Ryerson Univ. (Canada)

Identification of radiolucent foreign bodies in tissue using optoacoustic spectroscopic imaging [7899-128]
L. Page, S. Maswadi, R. D. Glickman, The Univ. of Texas Health Science Ctr. at San Antonio (United States)

Initial experiences in the photoacoustic detection of melanoma metastases in resected lymph nodes [7899-129]
D. Grootendorst, J. Jose, P. Van der Jagt, W. Van der Weg, K. Nagel, Univ. of Twente (Netherlands); M. Wouters, H. Van Boven, The Netherlands Cancer Institute (Netherlands); T. G. Van Leeuwen, Univ. of Twente (Netherlands) and Univ. of Amsterdam (Netherlands); W. Steenbergen, Univ. of Twente (Netherlands); T. Ruers, The Netherlands Cancer Institute (Netherlands) and Univ. of Twente (Netherlands); S. Manohar, Univ. of Twente (Netherlands)

Monitoring of HIFU thermal damage using integrated photoacoustic imaging and high intensity focused ultrasound technique [7899-131]
H. Cui, X. Yang, The Univ. of Kansas (United States)

Interlaced realtime channel-domain photoacoustic and ultrasound imaging [7899-132]
T. Harrison, R. J. Zemp, Univ. of Alberta (Canada)
Quantitative high-resolution photoacoustic spectroscopy by combining photoacoustic imaging with diffuse optical tomography (Best Poster Paper Award) [7899-134]
A. Q. Bauer, R. E. Nothdurft, Washington Univ. in St. Louis (United States); T. N. Erpelding, Philips Research (United States); L. V. Wang, J. P. Culver, Washington Univ. in St. Louis (United States)

A layered media approach to photoacoustic tomography [7899-135]
R. W. Schoonover, Illinois Institute of Technology (United States) and Washington Univ. in St. Louis (United States); M. A. Anastasio, Washington Univ. in St. Louis (United States)

Spectrum analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model [7899-136]
R. E. Kumon, C. X. Deng, Univ. of Michigan (United States); X. Wang, Univ. of Michigan School of Medicine (United States)

Improved depth-of-field photoacoustic microscopy with a custom high-frequency annular array transducer [7899-137]
H. Lu, P. Shao, J. Ranasinghesagara, T. DeWolf, T. Harrison, Univ. of Alberta (Canada); W. Gibson, Acoustic Vision Technologies Inc. (Canada); R. J. Zemp, Univ. of Alberta (Canada)

Real-time co-registered ultrasound and photoacoustic imaging system based on FPGA and DSP architecture [7899-138]
U. Alqasemi, H. Li, A. Aguirre, Q. Zhu, Univ. of Connecticut (United States)

Optimising the illumination geometry of a clinical reflection mode photoacoustic scanner [7899-139]
D. Birtill, M. Jaeger, A. G. Gertsch, J. C. Bamber, The Institute of Cancer Research (United Kingdom) and Royal Marsden NHS Trust (United Kingdom)

Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization [7899-140]
K. Wang, Washington Univ. in St Louis (United States); E. Y. Sidky, The Univ. of Chicago (United States); M. A. Anastasio, Washington Univ. in St Louis (United States); A. A. Oraevsky, TomoWave Labs., Inc. (United States); X. Pan, The Univ. of Chicago (United States)

Therapy with a photoacoustic/ultrasound dual-modality agent [7899-141]
Y.-H. Wang, National Taiwan Univ. (Taiwan); A.-H. Liao, National Taiwan Univ. (Taiwan) and National Taiwan Univ. of Science and Technology (Taiwan); J.-H. Chen, Y.-H. Lee, C.-R. Wang, National Chung Cheng Univ. (Taiwan); P.-C. Li, National Taiwan Univ. (Taiwan)

Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection [7899-142]
J. Jo, X. Yang, The Univ. of Kansas (United States)

Multiple-illumination photoacoustic tomography: reconstructing absorption, scattering, and Grüneisen coefficient distributions [7899-145]
P. Shao, Univ. of Alberta (Canada); B. Cox, Univ. College London (United Kingdom); R. J. Zemp, Univ. of Alberta (Canada)
Evaluation of optoacoustic conversion efficiency of light-absorbing films for optoacoustic transmitter applications [7899-146]
H. W. Baac, T. Ling, H. J. Park, L. J. Guo, Univ. of Michigan (United States)

Photoacoustic and Doppler ultrasound for oxygen consumption estimation: implementation on a clinical array system [7899-147]
Y. Jiang, T. Harrison, R. J. Zemp, Univ. of Alberta (Canada)

Oxygen consumption estimation with combined color Doppler ultrasound and photoacoustic microscopy: a phantom study [7899-148]
Y. Jiang, T. Harrison, A. Forbrich, R. J. Zemp, Univ. of Alberta (Canada)

Wavelength agile photoacoustic microscopy with a photonic crystal fiber supercontinuum source [7899-150]
M. Liu, T. Buma, Univ. of Delaware (United States)

In vivo multiscale photoacoustic microscopy of human skin [7899-152]
C. P. Favazza, S. Hu, Washington Univ. in St. Louis (United States); V. Huang, O. Jassim, L. A. Cornelius, Washington Univ. School of Medicine (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

Gold nanorods tailored as tracers for sentinel lymph node biopsy imaged by photothermal optical coherence tomography [7899-155]
Y. Jung, R. K. Wang, Univ. of Washington (United States)

Gold nanorod distribution in mouse tissues after intravenous injection monitored with optoacoustic tomography [7899-157]
R. Su, A. V. Liopo, H.-P. Brecht, S. A. Ermilov, A. A. Oraevsky, TomoWave Labs., Inc. (United States)

A combined photoacoustic, pulse echo ultrasound, and optical coherence tomography endoscopy [7899-158]
Y. Yang, Univ. of Connecticut (United States); X. Li, Univ. of Southern California (United States); T. Wang, P. Kumavor, Univ. of Connecticut (United States); Q. Zhou, Univ. of Southern California (United States); Q. Zhu, Univ. of Connecticut (United States)

Focused, wide-band, polymer-based optoacoustic transducers for noninvasive monitoring of total hemoglobin concentration and other blood variables [7899-160]
E. Saerchen, I. Petrov, Y. Petrov, D. S. Prough, The Univ. of Texas Medical Branch (United States); W. Neu, Univ. of Applied Sciences (Germany); R. O. Esenaliev, The Univ. of Texas Medical Branch (United States)

Author Index
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard School of Medicine (United States)

Program Track Chairs

Steven L. Jacques, Oregon Health & Science University (United States)
William P. Roach, U.S. Air Force (United States)

Conference Chairs

Alexander A. Oraevsky, TomoWave Laboratories Inc. (United States)
Lihong V. Wang, Washington University in St. Louis (United States)

Program Committee

Mark A. Anastasio, Illinois Institute of Technology (United States)
Paul C. Beard, University College London (United Kingdom)
Claude A. Boccara, Ecole Supérieure de Physique et de Chimie Industrielles (France)
Gerald J. Diebold, Brown University (United States)
Charles A. DiMarzio, Northeastern University (United States)
Stanislav Y. Emelianov, The University of Texas at Austin (United States)
Rinat O. Esenaliev, The University of Texas Medical Branch (United States)
Martin Frenz, Universität Bern (Switzerland)
Steven L. Jacques, Oregon Health & Science University (United States)
Robert A. Kruger, OptoSonics, Inc. (United States)
Pai-Chi Li, National Taiwan University (Taiwan)
Andreas Mandelis, University of Toronto (Canada)
Vasilis Ntziachristos, Helmholtz Zentrum München GmbH (Germany)
Matthew O'Donnell, University of Washington (United States)
Günther Paltauf, Karl-Franzens-Universitaet Graz (Austria)
Wienelt Steenberg, Universiteit Twente (Netherlands)
William M. Whelan, University of Prince Edward Island (Canada)
Vladimir P. Zharov, University of Arkansas for Medical Sciences (United States)
Quing Zhu, University of Connecticut (United States)
Session Chairs

1 Translation to Clinical Applications I
 Stanislav Y. Emelianov, The University of Texas at Austin (United States)

2 Translation to Clinical Applications II
 Rinat O. Esenaliev, The University of Texas Medical Branch
 (United States)

3 Translation to Therapy Monitoring
 William M. Whelan, University of Prince Edward Island (Canada)

4 Microscopy
 Paul C. Beard, University College London (United Kingdom)

5 Sensing, Spectroscopy, and Quantification
 Lihong V. Wang, Washington University in St. Louis (United States)

6 Small Animal Imaging and Preclinical Imaging
 Lihong V. Wang, Washington University in St. Louis (United States)

7 Ultrasonic Modulation of Light
 Claude A. Boccara, Ecole Supérieure de Physique et de Chimie
 Industrielles (France)

8 Novel Designs, Systems, and Techniques
 Andreas Mandelis, University of Toronto (Canada)

9 Molecular Imaging, Probes, and Beacons
 Alexander A. Oraevsky, TomoWave Laboratories Inc. (United States)

10 Novel Signal and Image Processing
 Mark A. Anastasio, Illinois Institute of Technology (United States)

11 Nanoparticulate Contrast Agents
 Pai-Chi Li, National Taiwan University (Taiwan)

12 Novel Methods and Technologies
 Alexander A. Oraevsky, TomoWave Laboratories, Inc. (United States)
Introduction

Our conference on “Photons Plus Ultrasound: Imaging and Sensing” has experienced another significant growth as shown in the following figure and continues to lead the Photonics West BiOS Symposia in size. This volume of SPIE Proceedings reflects the high-quality research being conducted by our community and offers the latest information on developments in the field of photoacoustic or optoacoustic computed tomography, microscopy, sensing and monitoring as well as ultrasonic modulation of light and other related fields.

As in the past, the organizing committee recognized the leading researchers in the field by presenting the Best Paper Awards and the Best Poster Awards, sponsored by Seno Medical, San Antonio, Texas. This year, the Best Paper Awards went to:
Intravascular photoacoustic imaging of human coronary atherosclerosis
Krista Jansen, Erasmus MC (Netherlands); Antonius F. W. van der Steen, Erasmus MC (Netherlands) and Interuniversity Cardiology Institute (Netherlands); Geert Springeling, Heleen M. M. van Beusekom, J. Wolter Oosterhuis, Gijs van Soest, Erasmus MC (Netherlands)

In vivo longitudinal photoacoustic imaging of subcutaneous tumours in mice
Jan Laufer, Peter Johnson, Edward Zhang, Bradley Treeby, Ben Cox, Barbara Pedley, Paul Beard, Univ. College London (United Kingdom)

The Best Poster Awards were given to:

Second generation optical-resolution photoacoustic microscopy
Konstantin Maslov, Song Hu, Lihong V. Wang, Washington Univ. in St. Louis (United States)

Quantitative high resolution photoacoustic spectroscopy by combining photoacoustic imaging with diffuse optical tomography
Adam Q. Bauer, Ralph E. Nothdurft, Washington Univ. in St. Louis (United States); Todd N. Erpelding, Philips Research (United States); Lihong V. Wang, Joseph P. Culver, Washington Univ. in St. Louis (United States)

We would like to congratulate the winners and thank all the contributors to this conference for making it another great success!

Alexander A. Oraevsky
Lihong V. Wang