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ABSTRACT 
 

With the advent of targeted agents, it has become clinically important to distinguish histologic types of non-small cell 
lung cancers (NSCLCs) using biopsy samples. We investigated whether direct tissue matrix-assisted laser 
desorption/ionization (MALDI) mass spectrometry (MS) analysis on lipid may classify histology of NSCLCs. Twenty-
one pairs of frozen, resected NSCLCs were analyzed using histology-directed, MALDI MS. 2,5-dihydroxybenzoic 
acid/α-cyano-4-hydroxycinnamic acid were manually deposited on areas of each tissue section enriched in epithelial cells 
to identify lipid profiles, and mass spectra were acquired using a MALDI-time of flight instrument. Squamous cell 
carcinomas and adenocarcinomas, two major histologic types of NSCLC, were found to have different lipid profiles. 
Discriminatory lipids correctly classified the histology of 80.4% of independent NSCLC surgical tissue samples (41 out 
of 51) in validation set, suggesting that lipid profiles can classify NSCLCs according to the histologic type. We also 
found that protein and lipid MALDI MS profiles can classify 30 breast cancers according to the intrinsic subtypes. 
Immunohistochemistry-defined, luminal, HER2+, and triple-negative tumors demonstrated different protein and lipid 
profiles, as evidenced by cross validation P values < 0.01. Discriminatory proteins and lipids classified tumors according 
to the intrinsic subtype with median prediction accuracies of 80.0-81.3% in 100 random test sets. Potential advantages of 
this label-free approach may include small tissue requirement, relatively rapid procedure, and low reagent cost. Day-to-
day variation of this technology is also acceptable, with the Pearson correlation of 0.95. Taken together, these results 
suggest the possible clinical utility of histology-directed, lipid and protein MALDI MS. 
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1.BACKGROUND 
 
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been demonstrated to be useful for 
direct molecular profiling of common cancers1. In this approach, sinapinic acid is deposited on tumor-rich area of tissue 
cryosections, and mass spectra are obtained. The resulting spectra are composed primarily of singly charged ions of 
proteins present in tumor-rich area. Hence, this approach captures relatively pure tumor cell-specific signals, and requires 
less tissue amount than tissue lysate-based proteomics technologies. Recent advances in MALDI MS and the related 
development of effective matrices made it possible to directly probe tissues to profile lipid composition and distribution2.  
 

Current histopathologic methods have some limitations in histopathologic classification of small biopsy samples. In 
non-small cell lung cancers (NSCLCs), for example, the accuracy and reliability of morphologic subclassification alone 
in small biopsies are low, and approximately 25% of bronchoscopic biopsies cannot be subtyped based on morphology 
alone. Addition of the immunohistochemistry panels classifies 80-90% of these NSCLC cases, with 10-20% of cases 
remaining unclassified for the histologic subtype3. Thus, there is the unmet need for sensitive and specific biomarkers for 
histopathologic diagnosis of NSCLCs.   
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2.DATA 
 
To explore whether lipid MALDI MS profiles may be more useful than conventional protein MALDI MS profiles in 
histopathologic diagnosis of NSCLCs, 21 pairs of frozen, resected NSCLCs and adjacent normal tissue samples were 
analyzed. 2,5-dihydroxybenzoic acid / α-cyano-4-hydroxycinnamic acid (DHB/CHCA) were manually deposited on 
areas of each tissue section enriched in epithelial cells to identify lipid profiles, and mass spectra were acquired using a 
MALDI-time of flight instrument (TOF). In 4 out of 21 lung cancer samples (19%), the entire sample had >50% of 
tumor nuclei. In the remaining 17 samples (81%), the pathologist marked the H&E-stained consecutive cryosection slide 
at tumor-rich (>50% of tumor nuclei) area, and care was taken to deposit the DHB/CHCA matrix within the boundary of 
marked tumor-rich area. The average MALDI MS spectra were composed of 3 to 5 individual measurements for cancer 
samples (with a median value of 3), and 3 to 5 individual measurements for adjacent normal samples (with a median 
value of 4). The individual measurements were averaged in order to minimize intra-sample variability. Post-spectral 
processing identified 144 features (78 and 66 for positive and negative modes, respectively) across the entire mass range 
for all of the samples studied. This analysis revealed that squamous cell carcinomas and adenocarcinomas have different 
lipid profiles. Eleven lipid MALDI peaks, which were differentially expressed between squamous cell carcinomas and 
adenocarcinomas in this training set, correctly classified the histology of 80.4% of NSCLC surgical tissue samples (41 
out of 51) in validation set. Fig 1 graphically displays principal component analysis plots of NSCLC samples in training 
and validation sets, based on all MALDI MS peaks acquired at the m/z ranging from 500 to 1,200. 
 
 
 

 
 

Fig 1. The left panel shows a principal component analysis plot for 21 pairs of adjacent normal (shown in red) and lung cancer 
tissue samples (10 squamous cell carcinomas (shown in green) and 11 adenocarcinomas (shown in blue)) in the training set, 
which graphically represents 1-correlation distances among samples, based 144 MALDI MS peaks detected at the m/z range 
500-1,200 (78 and 66 peaks detected in positive and negative ion modes, respectively). The right panel shows a principal 
component analysis plot for the validation set (26 squamous cell carcinomas (shown in green) and 25 adenocarcinomas 
(shown in red)), based all lipid MALDI MS peaks. Figure is reproduced from our previous article, Ref. #4. 

 
 

Classification power of these discriminatory lipids was further validated in imaging MALDI MS analysis on 
bronchoscopic biopsy samples, which demonstrated their differential expression in cancer cells between squamous cell 
carcinomas and adenocarcinomas (Fig 2).   
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overexpression in ovarian cancers. For example, phosphatidylcholines (PCs) {34:1} [M+H]+ (m/z 760.7) and {34:1} 
[M+K]+ (m/z 798.6) were overexpressed in both cancers. 

 
Lipid MALDI MS profiling was useful in biomarker discovery. The MS/MS analysis identified that sulfatide (ST-OH) 

{42:1} [M-H]– (m/z 906.9) and phosphatidylcholine (PC) {32:0} [M+Na]+ (m/z 756.7) were overexpressed in lung 
adenocarcinomas, compared with lung squamous cell carcinomas. Lung adenocarcinomas express a number of genes that 
are crucial to lung terminal differentiation and maturation, such as surfactant protein B7. Lung surfactant, made by type II 
alveolar cells, is a complex mixture composed primarily (80-90%) of phospholipids, 85% of which is 
phosphatidylcholine8. The majority of phosphatidylcholine in the pulmonary surfactant is present as 
dipalmitoylphosphatidylcholine (58%), containing two palmitic acids (C16:0)9. Hence, increase in PC {32:0} (m/z 756.7) 
in our lung adenocarcinoma is consistent with the tumor cell ontogeny10.   

 
When the spot-to-spot variation of the peak area was estimated for each of 21 normal lung tissue samples, median 

coefficient of variation was 21.0% (interquartile range, 13.3-36.8) for 44 peaks. Repeated measurement of 12 
adenocarcinomas at one-week interval demonstrated the moderately reproducibility [median Pearson correlation, 0.95 
(interquartile range, 0.94-0.98)].    
 

3.CONCLUSIONS 
 
Given relatively low running cost, rapid experimental procedure, and small amount of tissue required, lipid and protein 
tissue MALDI MS profiling approach may provide a clear advantage for the diagnosis and histology classification of 
common cancers. The results presented herein demonstrate that lipid and protein MALDI MS profiles may possibly 
complement the histopathology practice in the future. 
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