Front Matter: Volume 8547

Event: SPIE Security + Defence, 2012, Edinburgh, United Kingdom
High-Power Lasers 2012: Technology and Systems

Harro Ackermann
Willy L. Bohn
Editors

24–26 September 2012
Edinburgh, United Kingdom

Sponsored by
SPIE

Cosponsored by
SELEX GALILEO • THALES

Delivered with the support of
Scottish Development International • Scottish Enterprise

Cooperating Organisations
DSTL (United Kingdom) • IOP Instrument Science and Technology Group (United Kingdom)
Scottish Optoelectronics Association (United Kingdom)
Electronics Sensors and Photonics Knowledge Transfer Network (United Kingdom)

Published by
SPIE

Volume 8547
Contents

HIGH POWER LASER SYSTEMS AND DEMONSTRATIONS

8547 04 Overview of the laser activities at Rheinmetall Waffe Munition (Invited Paper) [8547-3]
K. Ludewigt, Th. Riesbeck, B. Schünemann, A. Graf, M. Jung, Rheinmetall Waffe Munition GmbH (Germany); T. Schreiber, R. Eberhardt, A. Tünnermann, Fraunhofer Institute for Applied Optics and Precision Engineering (Germany)

8547 05 Recent developments and near term directions for Navy laser weapons system (LaWS) testbed (Invited Paper) [8547-4]
R. J. Pawlak, Naval Surface Warfare Ctr. Dahlgren Div. (United States)

8547 06 Spectrally beam combined fiber lasers for high power, efficiency, and brightness (Invited Paper) [8547-5]
R. S. Afzal, E. Honea, M. Savage-Leuchs, N. Gitkind, R. Humphreys, J. Henrie, K. Brar, D. Jander, Lockheed Martin Aculight (United States)

8547 08 High-power beam combining: a step to a future laser weapon system (Invited Paper) [8547-7]
R. Protz, J. Zoz, F. Geidek, S. Dietrich, M. Fall, MBDA Germany (Germany)

GAS LASER TECHNOLOGY I

8547 09 Diode-pumped alkali laser-bleached wave dynamics (Invited Paper) [8547-8]
G. P. Perram, W. Miller, E. Hurd, Air Force Institute of Technology (United States)

8547 0A Determination of low pressure broadening and shift rates for Cs collisions with rare gases from Anderson Tallman theory [8547-9]
G. D. Hager, M. D. Rotondaro, G. P. Perram, Air Force Institute of Technology (United States)

THIN DISK LASER TECHNOLOGY

8547 0B High-power thin disk lasers (Invited Paper) [8547-10]
A. Giesen, J. Speiser, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)

8547 0C Recent disk laser development at Trumpf (Invited Paper) [8547-11]
T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, TRUMPF Laser GmbH and Co. KG (Germany); T. Metzger, TRUMPF Laser GmbH and Co. KG (Germany); S.-S. Schad, D. Sutter, A. Killi, TRUMPF Scientific Lasers GmbH and Co. KG (Germany)
High energy high brightness thin disk laser (Invited Paper) [8547-12]
M. D. Nixon, M. C. Cates, Boeing Directed Energy Systems (United States)

Thin disk laser in the 2μm wavelength range [8547-13]
J. Speiser, G. Renz, A. Giesen, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)

ULTRASHORT PULSE LASERS AND APPLICATIONS

Triggering and guiding electric discharge by a train of ultrashort UV pulses and a long UV pulse emitted by a hybrid Ti:Sapphire-KrF laser facility (Invited Paper) [8547-15]

Experimental component of the AFOSR-supported MURI program on ultrafast laser filamentation in transparent dielectric media (Invited Paper) [8547-16]
P. G. Polynkin, College of Optical Sciences, The Univ. of Arizona (United States)

Power scaling of high-power optically pumped semiconductor lasers for continuous wave and ultrashort pulse generation [8547-17]
A. Laurain, College of Optical Sciences, The Univ. of Arizona (United States); M. Scheller, College of Optical Sciences, The Univ. of Arizona (United States) and Nonlinear Control Strategies Inc. (United Kingdom); T.-L. Wang, College of Optical Sciences, The Univ. of Arizona (United States); J. Hader, J. V. Moloney, College of Optical Sciences, The Univ. of Arizona (United States) and Nonlinear Control Strategies, Inc. (United States); S. W. Koch, College of Optical Sciences, The Univ. of Arizona (United States) and Nonlinear Control Strategies, Inc. (United States); B. Heinen, M. Koch, Philipps-Univ. Marburg (Germany); B. Kunert, W. Stolz, Philipps-Univ. Marburg (Germany) and NAsP III/V GmbH (Germany)

FIBER LASER TECHNOLOGY

All-solid photonic bandgap fibers for high power lasers (Invited Paper) [8547-18]
L. Dong, Clemson Univ. (United States); K. Saioh, Hokkaido Univ. (Japan); F. Kong, P. Foy, T. Hawkins, D. Mcclane, G. Gu, Clemson Univ. (United States)

Single crystal fibers for high power lasers (Invited Paper) [8547-19]
W. Kim, U.S. Naval Research Lab. (United States); C. Florea, Sotera Defense Solutions, Inc. (United States); C. Baker, D. Gibson, L. B. Shaw, S. Bowman, S. O’Connor, G. Villalobos, S. Bayya, U.S. Naval Research Lab. (United States); I. D. Aggarwal, Sotera Defense Solutions, Inc. (United States); J. S. Sanghera, U.S. Naval Research Lab. (United States);

BEAM COMBINING TECHNOLOGY

New design for passive coherent coupling of fiber lasers (Invited Paper) [8547-23]
F. Jeux, XLIM Institut de Recherche, CNRS, Univ. de Limoges (France) and Astrium SAS (France); A. Desfarges-Berthelemot, V. Kermène, A. Barthelemy, XLIM Institut de Recherche, CNRS, Univ. de Limoges (France); D. Sabourdy, J.-E. Montagne, CILAS (France)
Monolithic eye-safer photonic crystal fiber lasers and amplifiers (Invited Paper) [8547-24]
C. G. Carlson, B. G. Ward, U.S. Air Force Academy (United States); D. L. Sipes Jr., J. D. Tafoya, Optical Engines, Inc. (United States)

Beam combining concepts using Stimulated Brillouin Scattering [8547-26]
A. M. Scott, QinetiQ Ltd. (United Kingdom)

SOLID STATE AND SEMICONDUCTOR LASER TECHNOLOGY

Coherent polarization locking of thermal-sensitive Ho:YAG laser [8547-29]
C. F. Chua, L. H. Tan, P. B. Phua, Nanyang Technological Univ. (Singapore)

Recent advances in eye-safe Er:YAG solid-state heat-capacity technology (Invited Paper) [8547-30]
M. Eichhorn, S. Bigotta, T. Ibach, Institut Franco-Allemand de Recherches de Saint-Louis (France)

Transient analysis of thermal effects in non-symmetrically pumped laser slabs [8547-31]
E. Spinozzi, M. Vitiello, GEM Elettronica srl (Italy)

Overview on new diode lasers for defense applications [8547-32]
J. Neukum, DILAS Diodenlaser GmbH (Germany)

GAS LASER TECHNOLOGY II

Gain and lasing of optically pumped metastable rare gas atoms (Invited Paper) [8547-34]
J. Han, M. C. Heaven, Emory Univ. (United States)

Modeling of static and flowing-gas diode pumped alkali lasers [8547-35]
B. D. Barmashenko, S. Rosenwaks, Ben-Gurion Univ. of the Negev (Israel)

Advanced CO laser systems [8547-36]
A. Ionin, P.N. Lebedev Physical Institute (Russian Federation)

POSTER SESSION

Analysis of a passively q-switched Nd:YAG slab laser oscillator/amplifier system [8547-37]
I. I. Lancranjan, Advanced Study Ctr.-INCAS (Romania); D. Savastru, S. Miclos, R. Savastru, National Institute of Research and Development for Optoelectronics (Romania)

Author Index
Conference Committee

Symposium Chairs

David H. Titterton, Defence Science and Technology Laboratory (United Kingdom)
Reinhard R. Ebert, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)

Conference Chairs

Harro Ackermann, High Energy Laser Joint Technology Office (United States)
Willy L. Bohn, BohnLaser Consult (Germany)

Session Chairs

1 High Power Laser Systems and Demonstrations I
 Harro Ackermann, High Energy Laser Joint Technology Office (United States)
 Willy L. Bohn, BohnLaser Consult (Germany)

2 High Power Laser Systems and Demonstrations II
 Harro Ackermann, High Energy Laser Joint Technology Office (United States)
 Willy L. Bohn, BohnLaser Consult (Germany)

3 Gas Laser Technology I
 Glen P. Perram, Air Force Institute of Technology (United States)

4 Thin Disk Laser Technology
 Adolf Giesen, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)

5 Ultrashort Pulse Lasers and Applications
 Czeslaw Radzewicz, University of Warsaw (Poland)

6 Fiber Laser Technology
 Jens Limpert, Friedrich-Schiller-Universität Jena (Germany)

7 Beam Combining Technology
 Jens Limpert, Friedrich-Schiller-Universität Jena (Germany)
8 Solid State and Semiconductor Laser Technology
 Mark Dubinskii, U.S. Army Research Laboratory (United States)

9 Gas Laser Technology II
 Glen P. Perram, Air Force Institute of Technology (United States)