Front Matter: Volume 8733
Laser Technology for Defense and Security IX

Mark Dubinskii
Stephen G. Post
Editors

April 30–1 May 2013
Baltimore, Maryland, United States

Sponsored and Published by
SPIE

Volume 8733
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9780819495242

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2013, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/13/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 6A, 6B, 6C, 6D, 6E, 6F, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 7A, 7B, 7C, 7D, 7E, 7F, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 8A, 8B, 8C, 8D, 8E, 8F, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 9A, 9B, 9C, 9D, 9E, 9F, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A
SESSION 1 LASER DIODES, OPTICALLY PUMPED SEMICONDUCTOR LASERS, AND PRACTICAL HEL SYSTEMS

8733 02 Advances in AlGaN/GaN laser diode technology for defence applications [8733-1]
S. P. Najda, TopGaN Ltd. (Poland); P. Perlin, TopGaN Ltd. (Poland) and Institute of High Pressure Physics (Poland); T. Suski, L. Marona, Institute of High Pressure Physics (Poland); M. Boćkowski, M. Leszczynski, TopGaN Ltd. (Poland) and Institute of High Pressure Physics (Poland); A. Kafar, S. Stanczyk, Institute of High Pressure Physics (Poland); P. Wisniewski, R. Czernecki, TopGaN Ltd. (Poland) and Institute of High Pressure Physics (Poland); R. Kucharski, Ammono S. A. (Poland); G. Targowski, TopGaN Ltd. (Poland)

8733 03 Recent advances in power scaling of high-power optically-pumped semiconductor lasers for ultrashort pulse generation and continuous wave single frequency operation [8733-3]
A. Laurain, College of Optical Sciences, Univ. of Arizona (United States); M. Scheller, College of Optical Sciences, Univ. of Arizona (United States) and Nonlinear Control Strategies Inc. (United States); T.-L. Wang, College of Optical Sciences, Univ. of Arizona (United States); J. Hader, J. V. Moloney, College of Optical Sciences, Univ. of Arizona (United States) and Nonlinear Control Strategies Inc. (United States); B. Heinen, Philipps Univ. Marburg (Germany); B. Kunert, W. Stolz, Philipps Univ. Marburg (Germany) and NAsP III/V GmbH (Germany)

8733 04 High-energy laser activities at MBDA Germany [8733-4]
B. Mohring, S. Dietrich, L. Tassini, R. Protz, F. Geidek, J. Zoz, MBDA Deutschland GmbH (Germany)

8733 05 Beam-guidance optics for high-power fiber laser systems [8733-5]
B. Mohring, L. Tassini, R. Protz, J. Zoz, MBDA Deutschland GmbH (Germany)

8733 06 Development of advanced seed laser modules for lidar and spectroscopy applications [8733-2]
N. S. Prasad, NASA Langley Research Ctr. (United States); A. Rosiewicz, S. M. Coleman, Goocch and Housego Boston (United States)

SESSION 2 LASER DIODE DEVELOPMENT FOR DPALS AND LASER WEAPONS IN THE FUTURE BATTLEFIELD

8733 07 Narrow-line, tunable, high-power diode laser pump for DPAL applications [8733-8]
R. Pandey, D. Merchen, D. Stapleton, D. Irwin, C. Humble, S. Patterson, DILAS Diode Laser Inc. (United States); H. Kissel, J. Biesenbach, DILAS Diodenlaser GmbH (Germany)

8733 09 Military applications of the laser weapons in the future battlefield [8733-42]
H. Celik, S. Adana, E. Yahsi, Turkish War College (Turkey)
SESSION 3 MID-IR LASERS

8733 0A Compact and efficient nanosecond pulsed tuneable OPO in the mid-IR spectral range [8733-10]
J. Hellström, P. Jänes, G. Elgcrona, H. Karlsson, Cobolt AB (Sweden)

8733 0B Interband cascade lasers with high continuous-wave output powers at room temperature [8733-11]

8733 0C Wide-band coherent supercontinuum generation [8733-13]
H. Hu, W. Li, N. K. Dutta, Univ. of Connecticut [United States]

8733 0E Performance and reliability of quantum cascade lasers [8733-12]
T. L. Myers, B. D. Cannon, M. S. Taubman, B. E. Bernacki, Pacific Northwest National Lab. [United States]

SESSION 4 BULK SOLID STATE LASERS

8733 0G Temperature-dependent spectroscopy of Ho3+:YVO4 relevant to 2-µm laser operation [8733-17]

8733 0H Er-doped sesquioxides for 1.5-micron lasers - spectroscopic comparisons [8733-19]
L. D. Merkle, N. Ter-Gabrielyan, U.S. Army Research Lab. [United States]

SESSION 5 FIBER LASERS (CONTINUOUS WAVE)

8733 0I Stimulated Brillouin scattering in optical fibers excited by broad-band pump waves in the presence of feedback [8733-21]
M. S. Bowers, R. S. Afzal, Lockheed Martin Aculight [United States]

8733 0J High power modal instability measurements of very large mode area (VLMA) step index fibers [8733-22]
D. Engin, W. Lu, H. Verdun, S. Gupta, Fibertek, Inc. [United States]

8733 0L Highly efficient resonantly pumped Er:YAG large area waveguide laser with diffraction limited output [8733-20]

SESSION 6 ADVANCED LASER COMPONENT DEVELOPMENT I

8733 0N Intrinsically-low Brillouin gain optical fibers [8733-27]
P. D. Dragic, Univ. of Illinois at Urbana-Champaign [United States]; J. Ballato, S. Morris, T. Hawkins, Clemson Univ. [United States]
Recent progress in ceramic YAG cladding technology for fiber laser applications [8733-28]
H. D. Lee, B. Simn, I.-S. Park, UES, Inc. (United States)

SESSION 7 ADVANCED LASER COMPONENT DEVELOPMENT II

Coilable single crystal fibers of doped-YAG for high power laser applications [8733-32]
G. Maxwell, N. Soleimani, B. Ponting, E. Gebremichael, Shasta Crystals Inc. (United States)

Recent advancements in transparent ceramics and crystal fibers for high power lasers [8733-30]
W. Kim, C. Baker, G. Villalobos, U.S. Naval Research Laboratory (United States); C. Florea, Sotera Defense Solution (United States); D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, U.S. Naval Research Laboratory (United States); B. Sadowski, Sotera Defense Solution (United States); M. Hunt, University of Central Florida (United States); C. Askins, U.S. Naval Research Laboratory (United States); J. Peele, I. D. Aggarwal, Sotera Defense Solution (United States); J. S. Sanghera, U.S. Naval Research Laboratory (United States)

SESSION 8 FIBER LASERS (MID-IR, PULSED, AND TUNABLE)

Recent progress towards efficient and powerful fibre laser emission at 3 µm (Invited Paper) [8733-49]
S. D. Jackson, D. D. Hudson, The University of Sydney (Australia)

Ring cavity tunable fiber laser with external transversely chirped Bragg grating [8733-36]
A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov, OptiGrate Corp. (United States); L. Glebov, The College of Optics and Photonics, University of Central Florida (United States)

High efficiency, high pulse energy fiber laser system [8733-37]
M. S. Bowers, J. Henrie, M. Garske, D. Templeman, R. Afzal, Lockheed Martin Aculight (United States)

POSTER SESSION

Ray matrix approach for the analysis of optical-axis perturbation in nonplanar ring resonators based on appropriate coordinate system [8733-38]
M. Chen, J. Yuan, X. Long, Z. Kang, Y. Li, National Univ. of Defense Technology (China)

Simulation of atmospheric turbulence compensation through piston-only phase control of a laser phased array [8733-39]
J. E. McCrae Jr., Air Force Institute of Technology (United States) and Oak Ridge Institute for Science and Education (United States); N. Van Zandt, Air Force Institute of Technology (United States); S. J. Cusumano, MZA Associates Corp. (United States); S. T. Fiorino, Air Force Institute of Technology (United States)

Experimental evaluation and performance optimization of a flash lamp pumped Er: Glass laser system over temperature extremes [8733-40]
S. K. Shrivastava, L. Soni, R. Y. Chaudhari, Bharat Electronics Ltd. (India)
Compact passively mode-locked fiber laser at 1.55 µm with low timing jitter of 8 fs
K. Wu, P. P. Shum, Nanyang Technological Univ. (Singapore)
Conference Committee

Symposium Chair

Kenneth R. Israel, Major General (USAF Retired) (United States)

Symposium Cochair

David A. Whelan, Boeing Defense, Space, and Security (United States)

Conference Chairs

Mark Dubinskii, U.S. Army Research Laboratory (United States)
Stephen G. Post, Missile Defense Agency (United States)

Conference Program Committee

Steven R. Bowman, U.S. Naval Research Laboratory (United States)
Iyad Dajani, Air Force Research Laboratory (United States)
Fabio Di Teodoro, The Aerospace Corporation (United States)
Anthony M. Johnson, University of Maryland, Baltimore County (United States)
Don D. Seeley, High Energy Laser Joint Technology Office (United States)

Session Chairs

1 Laser Diodes, Optically Pumped Semiconductor Lasers, and Practical HEL Systems
 Shadi A. Naderi, Air Force Research Laboratory (United States)

2 Laser Diode Development for DPALs and Laser Weapons in the Future Battlefield
 Steven R. Bowman, U.S. Naval Research Laboratory (United States)

3 Mid-IR Lasers
 Anthony M. Johnson, University of Maryland, Baltimore County (United States)

4 Bulk Solid State Lasers
 Fabio Di Teodoro, The Aerospace Corporation (United States)

5 Fiber Lasers (Continuous Wave)
 Shadi A. Naderi, Air Force Research Laboratory (United States)
6 Advanced Laser Component Development I
Christopher S. Washer, High Energy Laser Joint Technology Office
(United States)

7 Advanced Laser Component Development II
Steven R. Bowman, U.S. Naval Research Laboratory (United States)

8 Fiber Lasers (Mid-IR, Pulsed, and Tunable)
Fabio Di Teodoro, The Aerospace Corporation (United States)