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ABSTRACT   

Ultrasensitive detection of methane, isotopic carbon dioxide, carbon monoxide, formaldehyde, acetylene and ethylene is 
performed in the spectral range 2.5 – 5 μm using intracavity spectroscopy inside a broadband optical parametric 
oscillator (OPO). The two separate OPOs were operated near degeneracy and were synchronously pumped either by a 
mode-locked erbium (1560 nm) or thulium (2050 nm) fiber laser. A large instantaneous bandwidth of up to 800 cm−1 
allowed for simultaneous detection of several gases. We observed an effective path length enhancement due to coherent 
interaction inside the OPO cavity and achieve part-per-billion sensitivity levels.  
Keywords: molecular spectroscopy, middle infrared, optical parametric oscillator, frequency combs, intracavity 
spectroscopy, trace molecular detection. 

1. INTRODUCTION  
Optical spectroscopy in the mid-IR - the region of fundamental rotational-vibrational transitions - has potential for such 
applications as trace gas detection [1], remote chemical sensing [2], and human breath analysis [3–5]. For example, 
human breath is known to contain more than 500 different ’biomarker’ volatile organic compounds and quantification of 
these gases may have clinical applications. Simultaneous detection of several gases requires a suitable broadband or a 
widely tunable CW source. A broadband source coupled with Fourier transform methods provides massive parallelism 
of data collection and elimination of the need for wavelength tuning. Optical frequency combs are particularly attractive 
broadband sources for spectroscopy [6], owing to their extraordinary coherence over broad bandwidth. This property has 
led to applications including trace gas detection, molecular fingerprinting and dual comb spectroscopy [7–10].  

Synchronously pumped (sync-pumped) optical parametric oscillators represent an attractive way of generating mid-IR 
frequency combs suitable for molecular spectroscopy [14–17]. Recently a new method was implemented for generating 
broadband mid-IR combs, based on a doubly resonant, degenerate sync-pumped OPO, which rigorously downconverts 
and augments the spectrum of its pump frequency comb [18,19]. Exceptionally large parametric gain bandwidth at 
degeneracy combined with extensive cross mixing of comb components, resulted in extremely broad (> one-octave-
wide) instantaneous mid-IR bandwidth extending the wavelength range beyond 6 μm [19]. Here we show that such a 
broadband source, combined with intracavity spectroscopy, becomes a useful tool for trace molecular detection. 

We perform molecular spectroscopy using two such sources. One source is a periodically poled lithium niobate (PPLN) 
based OPO, pumped at 1560 nm by a femtosecond Er-doped fiber laser [18], and the other source is an orientation-
patterned GaAs based OPO, pumped at 2050 nm by a Tm-doped fiber laser [19]. Both OPOs operate near degeneracy – 
to obtain broad instantaneous bandwidth. In this work the OPO cavity itself is used as an enhancement cavity to increase 
the effective path length [20–22]. Intracavity spectroscopy of methane, carbon monoxide, formaldehyde and several 
other gases is performed by injecting gas directly into the OPO enclosure, or by using an intracavity gas cell with 
Brewster windows. We observe significant effective path length enhancement due to the intracavity action. In addition, 
we find that the measured spectral line shapes may have dispersive features. Such features have previously been 
observed with cavity-enhanced frequency comb spectroscopy [14, 23], and in intracavity spectroscopy with sync-
pumped OPOs and mode-locked lasers [19,24,25]. The measured spectra are compared to a simple model, based on the 
intracavity passive loss and round-trip dispersion, and excellent agreement between theory and measurements is found. 
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compared to the cavity round-trip distance (∼ 0.5 m vs. ∼ 4 m), but this could in principle be improved by using a 
different resonator geometry allowing longer intracavity gas cells. All spectra were measured at 1 atm. pressure and a 
temperature of 21.5 ◦C. The flow rate of gas through the intra-cavity cell was 0.2 l/min. for formaldehyde, and a steady 
state gas concentration was reached after ∼ 5 min. of flowing. No flowing was used for carbon monoxide. Unless 
otherwise noted, the OPO output spectra were measured with a commercial (Nicolet 6700) FTIR spectrometer with a 
liquid N2-cooled HgCdTe detector. We used the maximum available resolution of 0.125 cm−1 of the FTIR instrument for 
most of the measurements. The total measurement time was in the range of 30 seconds up to 4 minutes, which includes 
averaging over 8 to 32 scans. Reference spectra were obtained by filling the OPO enclosure and gas cell, respectively, 
with N2 only. The free-running pump lasers resulted in drifts of the OPO spectra on a time scale of the order of minutes, 
affecting the baseline in the relative OPO spectra. We therefore apply a baseline correction (determined by parts of the 
spectra between the absorption lines) of up to a few percent of the measured spectral intensity. 

4. RESULTS 
Fig. 2 shows the spectrum of methane, obtained when a controlled amount of this gas was injected into the N2-flushed 
OPO enclosure. Based on the volume of the enclosure, the concentration of methane in the OPO cavity was estimated to 
be 8.5 ppm. 'Dispersive' features seen in the spectrum result from the coherent interaction of intracavity light with the 
molecules. Due to small group dispersion of the OPO cavity, which results in the occurrence of an extra phase shift Δφ, 
the cavity transmission coefficient becomes complex. Molecular dispersion imposes an additional phase shift near 
absorption resonances (antisymmetric with respect to the line center). This causes a distortion of the spectral line shapes 
depending on the mismatch. Our simple theory for intracavity spectroscopy with femtosecond OPOs [27] predicts 
dispersive features in the absorption spectrum, similar to those observed with frequency comb spectroscopy enhanced 
with an external cavity [23]. The calculated absorption of methane, also shown in Fig. 2, was based on the known line 
intensities and line widths from the HITRAN database. We also used the known dispersion of the OPO cavity elements 
and observe that the simulated spectrum reproduces the measured spectrum pretty well.  

The results for spectral measurements of formaldehyde, acetylene+methane mixture, ethylene, carbon monoxide, and 
isotopic carbon dioxide are shown in Figures 3-7.  

 
Figure 2. Measured (black) and calculated (gray) absorption spectra for 8.5 ppm methane in nitrogen at 1 atm. Pressure. The 
calculated spectrum is inverted and offset for clarity. (b) Phase shift Δφ, which was used for the calculation in (a). 
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Figure 3. Measured (black) and calculated absorption spectra (gray) for 100 ppm formaldehyde in nitrogen at 1 atm. pressure. The 

calculated spectra are offset and shown on an inverted scale for clarity. (a) Extracavity spectra, (b) intracavity spectra. The effective 
path length is taken to be 6 times the length of the gas cell for the calculated spectrum in (b).

 
Figure 4. (a) Showing reference intracavity spectrum (gray) and, underneath, the intracavity spectrum (black) with the absorption 
features present, while detecting methane and acetylene simultaneously inside the OPO. (b) Experimentally measured methane 
spectrum (black) at a concentration of 1.4 ppm and the corresponding calculated spectrum (gray). (c) Round-trip phase shift for the 
calculated methane spectrum. (d) Experimentally measured acetylene spectrum (black) at a concentration of 3.8 ppm and the 
corresponding calculated spectrum (gray). (e) Round-trip phase shift for the calculated acetylene spectrum. The calculated spectra in 
(b) and (d) are offset and shown on an inverted scale for clarity. 
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Figure 5. (a) Experimentally measured ethylene spectrum (black) at a concentration of 48 ppm and the corresponding calculated 
spectrum (gray). The calculated spectrum is inverted and offset for clarity. (b) Phase shift Δφ(ν), which was used for the calculation in 
(a). 
 

 

 
Figure 6. Measured (black) and calculated (gray) absorption spectra for 50 ppm carbon monoxide in helium at 1 atm. pressure. The 
calculated spectrum is offset and shown on an inverted scale for clarity. The effective path length is taken to be 7 times the length of 
the gas cell for the calculated spectrum 
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Figure 7. Measured (black) and calculated (gray) molecular spectra of isotopic (13CO2) carbon dioxide. The simulation is based on the 
HITRAN database and is inverted for clarity 

 

Finally, Table 1 represents estimated detection limits for each of the six molecules investigated. 

Table 1. Estimated detection limits. 

Gas name Det. Limit 
[ppb] 

 

Meas. Time 
[s] 

Phys. path 
length [m] 

System 

Methane (CH4) 1.7 57 3.75 Er 

Formaldehyde (CH2O) 310 30 0.48 Er 

Acetylene (C2H2) 110 60 3.75 Er 

Ethylene (C2H2) 320 60 3.75 Er 

Carbon monoxide (CO) 270 120 0.48 Tm 

Isotopic carbon dioxide (13CO2) 2.4 90 4 Tm 

5. CONCLUSION 
By using synchronously pumped OPOs operating around degeneracy, we obtain ultrabroadband mid-IR radiation 
suitable for coherent spectroscopy in the Fourier domain. A large instantaneous bandwidth of up to 800 cm−1 allows 
detecting several trace gases simultaneously. Spectroscopic detection of six molecules in trace amounts has been 
performed in the wavelength range of 2.5 − 5 μm. By injecting the gases inside the OPO cavities we obtained substantial 
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enhancement of the effective path length and achieved detection limits down to part-per-billion level in volume. Our 
intracavity sensing approach offers great simplicity and compactness, which might be a great asset for future 
applications. The dispersive spectral features that we observe at some circumstances are well reproduced using a simple 
model for propagation in a dispersive Fabry-Perot cavity. These features can be predicted a priori from the knowledge of 
group dispersion of the intracavity elements. By decreasing the OPO loss and increasing the finesse of the OPO cavity 
we expect an improvement of detection limits, down to sub-ppb levels. This will also require better dispersion 
compensation, e.g. using chirped dielectric mirrors. Utilizing intracavity cells with low (∼0.1 atm.) gas pressure will 
allow better specificity of molecular recognition because of sharper spectral features. With further development, this 
system may find important applications in trace gas detection and real time human breath analysis – with further 
enhancement possible through the use of dual-comb multi-heterodyne methods. 
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